Grid Walking

You are situated in an n dimensional grid at position $(x[1], x[2], \ldots, x[n])$. The dimensions of the grid are $(D[1], D[2], \ldots D[n])$. In one step, you can walk one step ahead or behind in any one of the n dimensions. This implies that there are always $2 \times n$ possible moves if movements are unconstrained by grid boundaries. How many ways can you take m steps without leaving the grid at any point? You leave the grid if at any point $x[i]$, either $x[i] \leq 0$ or $x[i]>D[i]$.

For example, you start off in a 3 dimensional grid at position $x=[2,2,2]$. The dimensions of the grid are $D=[3,3,3]$, so each of your axes will be numbered from 1 to 3 . If you want to move $m=1$ step, you can move to the following coordinates: $\{[1,2,2],[2,1,2],[2,2,1],[3,2,2],[2,3,2],[2,2,3]\}$.

If we started at $x=[1,1,1]$ in the same grid, our new paths would lead to $\{[1,1,2],[1,2,1],[2,1,1]\}$. Other moves are constrained by $x[i] \not \approx 0$.

Function Description

Complete the gridWalking function in the editor below. It should return an integer that represents the number of possible moves, modulo $\left(10^{9}+7\right)$.
gridWalking has the following parameter(s):

- m : an integer that represents the number of steps
- x : an integer array where each $x[i]$ represents a coordinate in the $i^{\text {th }}$ dimension where $1 \leq i \leq n$
- D: an integer array where each $D[i]$ represents the upper limit of the axis in the $i^{\text {th }}$ dimension

Input Format

The first line contains an integer t, the number of test cases.
Each of the next t sets of lines is as follows:

- The first line contains two space-separated integers, n and m.
- The next line contains n space-separated integers $x[i]$.
- The third line of each test contains n space-separated integers $D[i]$.

Constraints

- $1 \leq t \leq 10$
- $1 \leq n \leq 10$
- $1 \leq m \leq 300$
- $1 \leq D[i] \leq 100$
- $1 \leq x[i] \leq D[i]$

Output Format

Output one line for each test case. Since the answer can be really huge, output it modulo $10^{9}+7$.

Sample Input

\square

Sample Output

```
    12
```


Explanation

We are starting from $(1,1)$ in a $2 \times 32-\mathrm{D}$ grid, and need to count the number of possible paths with length equal to 3 .

Here are the 12 paths:
$(1,1) \rightarrow(1,2) \rightarrow(1,1) \rightarrow(1,2)$
$(1,1) \rightarrow(1,2) \rightarrow(1,1) \rightarrow(2,1)$
$(1,1) \rightarrow(1,2) \rightarrow(1,3) \rightarrow(1,2)$
$(1,1) \rightarrow(1,2) \rightarrow(1,3) \rightarrow(2,3)$
$(1,1) \rightarrow(1,2) \rightarrow(2,2) \rightarrow(1,2)$
$(1,1) \rightarrow(1,2) \rightarrow(2,2) \rightarrow(2,1)$
$(1,1) \rightarrow(1,2) \rightarrow(2,2) \rightarrow(2,3)$
$(1,1) \rightarrow(2,1) \rightarrow(1,1) \rightarrow(1,2)$
$(1,1) \rightarrow(2,1) \rightarrow(1,1) \rightarrow(2,1)$
$(1,1) \rightarrow(2,1) \rightarrow(2,2) \rightarrow(2,1)$
$(1,1) \rightarrow(2,1) \rightarrow(2,2) \rightarrow(1,2)$
$(1,1) \rightarrow(2,1) \rightarrow(2,2) \rightarrow(2,3)$
$12 \bmod \left(10^{9}+7\right)=12$

