Hacker Country

There are N cities in Hacker Country. Each pair of cities are directly connected by a unique directed road, and each road has its own toll that must be paid every time it is used. You're planning a road trip in Hacker Country, and its itinerary must satisfy the following conditions:

- You can start in any city.
- You must use 2 or more different roads (meaning you will visit 2 or more cities).
- At the end of your trip, you should be back in your city of origin.
- The average cost (sum of tolls paid per road traveled) should be minimum.

Can you calculate the minimum average cost of a trip in Hacker Country?

Time Limits

Time limits for this challenge are provided here.

Input Format

The first line is an integer, N (number of cities).
The N subsequent lines of N space-separated integers each describe the respective tolls or traveling from city i to city j; in other words, the $j^{\text {th }}$ integer of the $i^{\text {th }}$ line denotes the toll for traveling from city i to city j.

Note: As there are no roads connecting a city to itself, the $i^{\text {th }}$ integer of line i will always be 0 .

Constraints

$1<N \leq 500$
$0<$ toll cost ≤ 200
roads traveled ≥ 2

Output Format

Print the minimum cost as a rational number p / q (tolls paid over roads traveled). The greatest common divisor of p and q should be 1 .

Sample Input

```
2
0 1
2 0
```


Sample Output

```
3/2
```


Explanation

The toll from city c_{0} to city c_{1} is 1 . The toll from c_{1} to c_{0} is 2 . Your travel cost $p=1+2=3$. Your number of roads traveled is $q=2$. Thus, we print $3 / 2$ as our answer.

