Halloween Sale

You wish to buy video games from the famous online video game store Mist.
Usually, all games are sold at the same price, p dollars. However, they are planning to have the seasonal Halloween Sale next month in which you can buy games at a cheaper price. Specifically, the first game will cost p dollars, and every subsequent game will cost d dollars less than the previous one. This continues until the cost becomes less than or equal to m dollars, after which every game will cost m dollars. How many games can you buy during the Halloween Sale?

Example

$p=20$
$d=3$
$m=6$
$s=70$.
The following are the costs of the first 11, in order:

$$
20,17,14,11,8,6,6,6,6,6,6
$$

Start at $p=20$ units cost, reduce that by $d=3$ units each iteration until reaching a minimum possible price, $m=6$. Starting with $s=70$ units of currency in your Mist wallet, you can buy 5 games:
$20+17+14+11+8=70$.

Function Description

Complete the howManyGames function in the editor below.
howManyGames has the following parameters:

- int p : the price of the first game
- int d: the discount from the previous game price
- int m : the minimum cost of a game
- int s : the starting budget

Input Format

The first and only line of input contains four space-separated integers p, d, m and s.

Constraints

- $1 \leq m \leq p \leq 100$
- $1 \leq d \leq 100$
- $1 \leq s \leq 10^{4}$

Sample Input 0

Sample Output 0

6

Explanation 0

Assumptions other than starting funds, s, match the example in the problem statement. With a budget of 80 , you can buy 6 games at a cost of $20+17+14+11+8+6=76$. A $7^{t h}$ game for an additional 6 units exceeds the budget.

Sample Input 1

```
20 3 6 85
```


Sample Output 1

7

Explanation 1

This is the same as the previous case, except this time the starting budget $s=85$ units of currency. This time, you can buy 7 games since they cost $20+17+14+11+8+6+6=82$. An additional game at 6 units will exceed the budget.

