King and Four Sons

The King of Byteland wants to grow his territory by conquering K other countries. To prepare his 4 heirs for the future, he decides they must work together to capture each country.

The King has an army, A, of N battalions; the $i^{t h}$ battalion has A_{i} soldiers. For each battle, the heirs get a detachment of soldiers to share but will fight amongst themselves and lose the battle if they don't each command the same number of soldiers (i.e.: the detachment must be divisible by 4). If given a detachment of size 0 , the heirs will fight alone without any help.

The battalions chosen for battle must be selected in the following way:

1. A subsequence of K battalions must be selected (from the N battalions in army A).
2. The $j^{\text {th }}$ battle will have a squad of soldiers from the $j^{\text {th }}$ selected battalion such that its size is divisible by 4 .

The soldiers within a battalion have unique strengths. For a battalion of size 5 , the detachment of soldiers $\{0,1,2,3\}$ is different from the detachment of soldiers $\{0,1,2,4\}$

The King tasks you with finding the number of ways of selecting K detachments of battalions to capture K countries using the criterion above. As this number may be quite large, print the answer modulo $10^{9}+7$.

Input Format

The first line contains two space-separated integers, N (the number of battalions in the King's army) and K (the number of countries to conquer), respectively.

The second line contains N space-separated integers describing the King's army, A, where the $i^{\text {th }}$ integer denotes the number of soldiers in the $i^{\text {th }}$ battalion $\left(A_{i}\right)$.

Constraints

- $1 \leq N \leq 10^{4}$
- $1 \leq K \leq \min (100, N)$
- $1 \leq A_{i} \leq 10^{9}$
- $1 \leq A_{i} \leq 10^{3}$ holds for test cases worth at least 30% of the problem's score.

Output Format

Print the number of ways of selecting the K detachments of battalions modulo $10^{9}+7$.

Sample Input

```
3 2
45
```


Sample Output

Explanation

First, we must find the ways of selecting 2 of the army's 3 battalions; then we must find all the ways of selecting detachments for each choice of battalion.

Battalions $\left\{A_{0}, A_{1}\right\}$:
A_{0} has 3 soldiers, so the only option is an empty detachment ($\}$).
A_{1} has 4 soldiers, giving us 2 detachment options ($\}$ and $\{0,1,2,3\}$).
So for this subset of battalions, we get $1 \times 2=2$ possible detachments.
Battalions $\left\{A_{0}, A_{2}\right\}$:
A_{0} has 3 soldiers, so the only option is an empty detachment (\{\}).
A_{2} has 5 soldiers, giving us 6 detachment options ($\},\{0,1,2,3\},\{0,1,2,4\},\{1,2,3,4\},\{0,1,3,4\}$, $\{0,2,3,4\}$). So for this subset of battalions, we get $1 \times 6=6$ possible detachments.

Battalions $\left\{A_{1}, A_{2}\right\}$:
A_{1} has 4 soldiers, giving us 2 detachment options ($\}$ and $\{0,1,2,3\}$).
A_{2} has 5 soldiers, giving us 6 detachment options ($\},\{0,1,2,3\},\{0,1,2,4\},\{1,2,3,4\},\{0,1,3,4\}$, $\{0,2,3,4\}$).
So for this subset of battalions, we get $2 \times 6=12$ possible detachments.
In total, we have $2+6+12=20$ ways to choose detachments, so we print $20 \%\left(10^{9}+7\right)$, which is 20.

