Ollivander's Inventory

Harry Potter and his friends are at Ollivander's with Ron, finally replacing Charlie's old broken wand.
Hermione decides the best way to choose is by determining the minimum number of gold galleons needed to buy each non-evil wand of high power and age. Write a query to print the id, age, coins_needed, and power of the wands that Ron's interested in, sorted in order of descending power. If more than one wand has same power, sort the result in order of descending age.

Input Format

The following tables contain data on the wands in Ollivander's inventory:

- Wands: The id is the id of the wand, code is the code of the wand, coins_needed is the total number of gold galleons needed to buy the wand, and power denotes the quality of the wand (the higher the power, the better the wand is).

Column	Type
id	Integer
code	Integer
coins_needed	Integer
power	Integer

- Wands_Property: The code is the code of the wand, age is the age of the wand, and is_evil denotes whether the wand is good for the dark arts. If the value of is_evil is 0 , it means that the wand is not evil. The mapping between code and age is one-one, meaning that if there are two pairs, $\left(\right.$ code $\left._{1}, a g e_{1}\right)$ and $\left(\right.$ code $\left._{2}, a g e_{2}\right)$, then code $_{1} \neq$ code $_{2}$ and $a g e_{1} \neq a g e_{2}$.

Column	Type
code	Integer
age	Integer
is_evil	Integer

Sample Input

Wands Table:

id	code	coins_needed	power
1	4	3688	8
2	3	9365	3
3	3	7187	10
4	3	734	8
5	1	6020	2
6	2	6773	7
7	3	9873	9
8	3	7721	7
9	1	1647	10
10	4	504	5
11	2	7587	5
12	5	9897	10
13	3	4651	8
14	2	5408	1
15	2	6018	7
16	4	7710	5
17	2	8798	7
18	2	3312	3
19	4	7651	6
20	5	5689	3

Wands_Property Table:

code	age	is_evil
1	45	0
2	40	0
3	4	1
4	20	0
5	17	0

Sample Output

[^0]
Explanation

The data for wands of age 45 (code 1):

id	age	coins_needed	power
5	45	6020	2
9	45	1647	10

- The minimum number of galleons needed for $\operatorname{wand}($ age $=45$, power $=2)=6020$
- The minimum number of galleons needed for $\operatorname{wand}($ age $=45$, power $=10)=1647$

The data for wands of age 40 (code 2):

id	age	coins_needed	power
14	40	5408	1
18	40	3312	3
11	40	7587	5
15	40	6018	7
17	40	8798	7
6	40	6773	7

- The minimum number of galleons needed for $\operatorname{wand}($ age $=40$, power $=1)=5408$
- The minimum number of galleons needed for wand $($ age $=40$, power $=3)=3312$
- The minimum number of galleons needed for $\operatorname{wand}($ age $=40$, power $=5)=7587$
- The minimum number of galleons needed for wand (age $=40$, power $=7)=6018$

The data for wands of age 20 (code 4):

id	age	coins_needed	power
10	20	504	5
16	20	7710	5
19	20	7651	6
1	20	3688	8

- The minimum number of galleons needed for $\operatorname{wand}($ age $=20$, power $=5)=504$
- The minimum number of galleons needed for $\operatorname{wand}($ age $=20$, power $=6)=7651$
- The minimum number of galleons needed for wand (age $=20$, power $=8)=3688$

The data for wands of age 17 (code 5):

id	age	coins_needed	power
20	17	5689	3
12	17	9897	10

- The minimum number of galleons needed for $\operatorname{wand}($ age $=17$, power $=3)=5689$
- The minimum number of galleons needed for $\operatorname{wand}($ age $=17$, power $=10)=9897$

[^0]: $\begin{array}{llll}9 & 45 & 1647 & 10\end{array}$
 1217989710
 12036888
 154060187
 $19 \quad 207651 \quad 6$
 $\begin{array}{llll}11 & 40 & 7587 & 5\end{array}$
 $10 \quad 205045$
 $18 \quad 40 \quad 3312 \quad 3$
 201756893

