Hexagonal Grid

You are given a hexagonal grid consisting of two rows, each row consisting of n cells. The cells of the first row are labelled $a_{1}, a_{2}, \ldots a_{n}$ and the cells of the second row are labelled $b_{1}, b_{2}, \ldots, b_{n}$.

For example, for $n=6$:

(Note that the b_{i} is connected with a_{i+1}.)
Your task is to tile this grid with 2×1 tiles that look like the following:

As you can see above, there are three possible orientations in which a tile can be placed.
Your goal is to tile the whole grid such that every cell is covered by a tile, and no two tiles occupy the same cell. To add to the woes, certain cells of the hexagonal grid are blackened. No tile must occupy a blackened cell.

Is it possible to tile the grid?
Here's an example. Suppose we want to tile this grid:

Then we can do the tiling as follows:

Input Format

The first line contains a single integer t, the number of test cases.
The first line of each test case contains a single integer n denoting the length of the grid.
The second line contains a binary string of length n. The $i^{\text {th }}$ character describes whether cell a_{i} is blackened.
The third line contains a binary string of length n. The $i^{\text {th }}$ character describes whether cell b_{i} is blackened.

A 0 corresponds to an empty cell and a 1 corresponds to blackened cell.

Constraints

- $1 \leq t \leq 100$
- $1 \leq n \leq 10$

Output Format

For each test case, print YES if there exists at least one way to tile the grid, and no otherwise.

Sample Input 0

[^0]
Sample Output 0

Explanation 0

The first test case in the sample input describes the example given in the problem statement above. For the second test case, there are two ways to fill it: either place two diagonal tiles side-by-side or place two horizontal tiles.

[^0]: 6
 6
 010000
 000010
 2
 00
 00
 2
 00
 10
 2
 00
 01
 2
 00
 11
 2
 10
 00

