Huarongdao

Huarongdao is a well-known game in China. The purpose of this game is to move the Cao Cao block out of the board.

Acme is interested in this game, and he invents a similar game. There is a N*M board. Some blocks in this board are movable, while some are fixed. There is only one empty position. In one step, you can move a block to the empty position, and it will take you one second. The purpose of this game is to move the Cao Cao block to a given position. Acme wants to finish the game as fast as possible.

But he finds it hard, so he cheats sometimes. When he cheats, he spends K seconds to pick a block and put it in an empty position. However, he is not allowed to pick the Cao Cao block out of the board .

Note

- 1. Immovable blocks cannot be moved while cheating.
- 2. A block can be moved only in the directions UP, DOWN, LEFT or RIGHT.

Input Format

The first line contains four integers N, M, K, Q separated by a single space. N lines follow. Each line contains M integers 0 or 1 separated by a single space. If the j_{th} integer is 1, then the block in i_{th} row and j_{th} column is movable. If the j_{th} integer is 0 then the block in i_{th} row and j_{th} column is fixed. Then Q lines follows, each line contains six integers EX_i, EY_i, SX_i, SY_i, TX_i, TY_i separated by a single space. The i_{th} query is the Cao Cao block is in row SX_i column SY_i, the exit is in TX_i, TY_i, and the empty position is in row EX_i column EY_i. It is guaranteed that the blocks in these positions are movable. Find the minimum seconds Acme needs to finish the game. If it is impossible to finish the game, you should answer -1.

Constraints

 $N,M \le 200$ $1 \le Q \le 250$ $10 \le K \le 15$ $1 \le EX_i, SX_i, TX_i \le N$ $1 \le EY_i, SY_i, TY_i \le M$

Output Format

You should output Q lines, i-th line contains an integer which is the answer to i-th query.

Sample Input

 20

Explanation

Move the block in (1, 4) to (1, 5); Move the block in (1, 3) to (1, 4); Move the block in (1, 2) to (1, 3); Move the block in (2, 2) to (1, 2); Move the block in (3, 2) to (2, 2); Move the block in (4, 2) to (3, 2); Move the block in (4, 3) to (4, 2); Move the block in (4, 1) to (4, 3) by cheating; Move the block in (4, 2) to (4, 1).

So, 1 + 1 + 1 + 1 + 1 + 1 + 1 + 12 + 1 = 20.