Huarongdao

Huarongdao is a well-known game in China. The purpose of this game is to move the Cao Cao block out of the board.

Acme is interested in this game, and he invents a similar game. There is a N*M board. Some blocks in this board are movable, while some are fixed. There is only one empty position. In one step, you can move a block to the empty position, and it will take you one second. The purpose of this game is to move the Cao Cao block to a given position. Acme wants to finish the game as fast as possible.

But he finds it hard, so he cheats sometimes. When he cheats, he spends K seconds to pick a block and put it in an empty position. However, he is not allowed to pick the Cao Cao block out of the board .

Note

1. Immovable blocks cannot be moved while cheating.
2. A block can be moved only in the directions UP, DOWN, LEFT or RIGHT.

Input Format

The first line contains four integers N, M, K, Q separated by a single space. N lines follow. Each line contains M integers 0 or 1 separated by a single space. If the jth integer is 1 , then the block in $i_{t h}$ row and $j_{t h}$ column is movable. If the $j_{t h}$ integer is 0 then the block in $i_{\text {th }}$ row and $j_{\text {th }}$ column is fixed. Then Q lines follows, each line contains six integers $E X_{i}, E Y_{i}, S X_{i}, S Y_{i}, T X_{i}, T Y_{i}$ separated by a single space. The $i_{\text {th }}$ query is the Cao Cao block is in row $S X_{i}$ column $S Y_{i}$, the exit is in $T X_{i}, T Y_{i}$, and the empty position is in row $E X_{i}$ column $E Y_{i}$. It is guaranteed that the blocks in these positions are movable. Find the minimum seconds Acme needs to finish the game. If it is impossible to finish the game, you should answer-1.

Constraints

```
\(\mathrm{N}, \mathrm{M} \leq 200\)
\(1 \leq \mathrm{Q} \leq 250\)
\(10 \leq \mathrm{K} \leq 15\)
\(1 \leq E X_{i}, \mathrm{SX}_{\mathrm{i}}, \mathrm{TX}_{\mathrm{i}} \leq \mathrm{N}\)
\(1 \leq E Y_{i}, S Y_{i}, T Y_{i} \leq M\)
```


Output Format

You should output Q lines, i-th line contains an integer which is the answer to i-th query.

Sample Input

```
5 12 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 0 1 1
154341
```


Explanation

Move the block in $(1,4)$ to $(1,5)$;
Move the block in $(1,3)$ to $(1,4)$;
Move the block in $(1,2)$ to $(1,3)$;
Move the block in $(2,2)$ to $(1,2)$;
Move the block in $(3,2)$ to $(2,2)$;
Move the block in $(4,2)$ to $(3,2)$;
Move the block in $(4,3)$ to $(4,2)$;
Move the block in $(4,1)$ to $(4,3)$ by cheating;
Move the block in $(4,2)$ to $(4,1)$.
So, $1+1+1+1+1+1+1+12+1=20$.

