Ichigo and Cubes

Ichigo is receiving special training from Kisuke Urahara to beat Aizen. This time, Kisuke took ($\mathrm{P} * \mathrm{Q} * \mathrm{R}$) identical cubes and made them into a big box of dimensions $P \times Q \times R$. Moreover, it happened quite by chance that P, Q, R were all pairwise coprime, that is, $\operatorname{gcd}(P, Q)=\operatorname{gcd}(Q, R)=\operatorname{gcd}(R, P)=1$ where $\operatorname{gcd}(X, Y)$ is the greatest integer dividing both X and Y. He then asked Ichigo to cut the box into two pieces with a single slice. Ichigo used a Getsuga Tenshou in his hollow form on the box and sliced it into two parts completely.

His slice was such that for a corner vertex X of the box, if A, B, C are the vertices of the box adjacent to X, then Ichigo's slice was a plane passing through A, B, C as given in the picture below. Now Kisuke is wondering what is the number of cubes that were cut into two parts. Since the answer can be huge, output it modulo $\left(10^{9}+7\right)$.

Input Format:

Line 1: T
T - Number of test cases.

Lines 2 to $\mathrm{T}+1$: $\mathbf{P} \mathbf{Q} \mathbf{R}$

P, Q, R - the dimensions of the box

Output Format:

For each test case, print a single integer in a new line that is the number of cubes that were cut by Ichigo modulo $\left(10^{9}+7\right)$.

Constraints:

$1<=T<=1000$
$1<=P, Q, R<=10^{12}$

Sample Input:

```
3
1 1 1
2 1 3
5 3 
```


Sample Output:

```
1
5
15
```


Explanation:

In the first test case, we have a single cube. And when Ichigo slices it, that single cube is sliced. So, the answer is 1 .

In the second test case, we have a $(2 \times 1 \times 3)$ cuboid. Then, when Ichigo takes an arbitrary vertex X and slice the cuboid as explained, then the cube which contains the vertex diagonally(body diagonal) opposite X in the cuboid is not cut, every other cube is cut. So, 5 cubes are cut.

