Identify Smith Numbers

A Smith number is a composite number, the sum of whose digits is the sum of the digits of its prime factors obtained as a result of prime factorization (excluding 1). The first few such numbers are $4,22,27$ $, 58,85,94$, and 121.

Example:

$378=2 \times 3 \times 3 \times 3 \times 7$
So, its prime factors are $2,3,3,3$, and 7 .
The sum of its digits is $(3+7+8)=18$.
The sum of the digits of its factors is $(2+3+3+3+7)=18$.
Similarly, 4937775 is a Smith number.
$4937775=3 \times 5 \times 5 \times 65837$, and the sum of its digits is the same as the sum of the digits of its prime factors: $4+9+3+7+7+7+5=3+5+5+6+5+8+3+7=42$.

Task:
Write a program to check whether a given integer is a Smith number.

Input Format

There will be only one line of input: N, the number which needs to be checked.

Constraints:

$0<N<2,147,483,647$ (max value of an integer of the size of 4 bytes)

Output Format

1 if the number is a Smith number.
0 if the number is a not Smith number.

Sample Input

378

Sample Output

1

Explanation

Its prime factors are $2,3,3,3$, and 7 .
The sum of its digits is $(3+7+8)=18$.
The sum of the digits of its factors is $(2+3+3+3+7)=18$.

