Infer HackerRankH

If we know that one is of type int and id is of type forall[a] a -> a, we can infer that id (one) is
of type int.

A function fun x y -> x has a generic type of forallla b] (a, b) -> a.

Let's write a program to help us infer the type of expression in a given envrionment!

First, we define the syntax of expression:

ident : [A-Za-z][A-Za-z0-9]* // variable names
expr : "let " ident " = " expr " in " expr // variable defination
| "fun " argList " =-> " expr // function defination
| simpleExpr
argList : { 0 or more ident seperated by ' ' }
simpleExpr : '(' expr ')'
| ident
| simpleExpr '(' paramList ')' // function calling
paramList : { 0 or more expr seperated ", " }

Then, we define the syntax of type:

ty = "() -> " ty // function without arguments
| '"(' tyList ") => " ty // uncurry function
| "forall[" argList "1" ty // generic type
| simpleTy " -> " ty // curry function
| simpleTy

tylList : { 1 or more ty seperated by ", " }
simpleTy : '"(' ty ")'
| ident
| simpleTy '[' tyList ']' // such as list[int]
Hint in parsing:
e Spacing is strict.

e Pay attention to avoid dead loop.

Type of given expression should be infered in an environment. The environment is consisted of a set of
functions with types:

head: forall[a] listl[a] -> a
tail: forallla] list[a] -> list[a]
nil: forallla] listl[a]

cons: forallla] (a, list[al) -> listl[a]
cons _curry: forallla] a -> list[a] -> list[a]
map: forallla b] (a -> b, list[a]l) -> list[b]

map_curry: forall[a b] (a -> b) -> list[a] -> list[b]
one: int
zero: int

1/3

succ: int -> int

plus: (int, int) -> int

eq: forallla] (a, a) -> bool

eq curry: foralll[a] a -> a -> bool

not: bool -> bool

true: bool

false: bool

pair: forallla bl (a, b) -> pairla, Db]

pair curry: forall[a b] a -> b -> pairla, b]
first: foralll[a b] pairl[a, b] -> a

second: forallla b] pairl[a, bl -> b

id: forallla] a -> a

const: foralll[a b] a -> b -> a

apply: forallla b] (a -> b, a) -> b

apply curry: forall[a b] (a -> b) -> a -> Db
choose: forallla] (a, a) -> a

choose curry: forall[a]l a -> a -> a

Sample Input #00

let x = id in x

Sample Output #00

forallla] a -> a

Explanation #00:
% is just id in the environment.

Sample Input #01

fun x -> let y = fun z -> z in y

Sample Output #01

foralll[a b] a -=> b -> Db

Explanation #01:
Function with variables which are not bounded in the environment should be generic function. The
variable names appear in forall[] should be from a to z subject to their appearance order in type

body.

Sample Input #02

choose (fun x y -> x, fun x y -> vy)

Sample Output #02

foralll[a] (a, a) -> a

Explanation #02:
The type of choose is foralll[a] (a, a) -> a.So x and y should be of the same type.

2/3

Sample Input #03

fun £ -> let x = fun g y -> let = g(y) in eq(f, g) in x

Sample Output #03

forallla b] (a => b) -> (a -> b, a) -> bool

Explanation #03:
The longest test case.

Final note:

All given expression are valid, non-recursive and can be infered successfully in given environment. But an
optional requirement is that your program should fail on incomplete uncurry version function calling. For
example, choose curry (one) should be infered as int -> int but choose (one) just fail in infering.

Tested by Bo You

3/3

https://www.hackerrank.com/stoundmire

