
1/3

Infer

If we know that one is of type int and id is of type forall[a] a -> a , we can infer that id(one) is

of type int .

A function fun x y -> x has a generic type of forall[a b] (a, b) -> a .

Let's write a program to help us infer the type of expression in a given envrionment!

First, we define the syntax of expression:

ident : [_A-Za-z][_A-Za-z0-9]* // variable names

expr : "let " ident " = " expr " in " expr // variable defination

 | "fun " argList " -> " expr // function defination

 | simpleExpr

argList : { 0 or more ident seperated by ' ' }

simpleExpr : '(' expr ')'

 | ident

 | simpleExpr '(' paramList ')' // function calling

paramList : { 0 or more expr seperated ", " }

Then, we define the syntax of type:

ty : "() -> " ty // function without arguments

 | '(' tyList ") -> " ty // uncurry function

 | "forall[" argList "]" ty // generic type

 | simpleTy " -> " ty // curry function

 | simpleTy

tyList : { 1 or more ty seperated by ", " }

simpleTy : '(' ty ')'

 | ident

 | simpleTy '[' tyList ']' // such as list[int]

Hint in parsing:

Spacing is strict.

Pay attention to avoid dead loop.

Type of given expression should be infered in an environment. The environment is consisted of a set of

functions with types:

head: forall[a] list[a] -> a

tail: forall[a] list[a] -> list[a]

nil: forall[a] list[a]

cons: forall[a] (a, list[a]) -> list[a]

cons_curry: forall[a] a -> list[a] -> list[a]

map: forall[a b] (a -> b, list[a]) -> list[b]

map_curry: forall[a b] (a -> b) -> list[a] -> list[b]

one: int

zero: int

2/3

succ: int -> int

plus: (int, int) -> int

eq: forall[a] (a, a) -> bool

eq_curry: forall[a] a -> a -> bool

not: bool -> bool

true: bool

false: bool

pair: forall[a b] (a, b) -> pair[a, b]

pair_curry: forall[a b] a -> b -> pair[a, b]

first: forall[a b] pair[a, b] -> a

second: forall[a b] pair[a, b] -> b

id: forall[a] a -> a

const: forall[a b] a -> b -> a

apply: forall[a b] (a -> b, a) -> b

apply_curry: forall[a b] (a -> b) -> a -> b

choose: forall[a] (a, a) -> a

choose_curry: forall[a] a -> a -> a

Sample Input #00

let x = id in x

Sample Output #00

forall[a] a -> a

Explanation #00:

x is just id in the environment.

Sample Input #01

fun x -> let y = fun z -> z in y

Sample Output #01

forall[a b] a -> b -> b

Explanation #01:

Function with variables which are not bounded in the environment should be generic function. The

variable names appear in forall[] should be from a to z subject to their appearance order in type

body.

Sample Input #02

choose(fun x y -> x, fun x y -> y)

Sample Output #02

forall[a] (a, a) -> a

Explanation #02:

The type of choose is forall[a] (a, a) -> a . So x and y should be of the same type.

3/3

Sample Input #03

fun f -> let x = fun g y -> let _ = g(y) in eq(f, g) in x

Sample Output #03

forall[a b] (a -> b) -> (a -> b, a) -> bool

Explanation #03:

The longest test case.

Final note:

All given expression are valid, non-recursive and can be infered successfully in given environment. But an

optional requirement is that your program should fail on incomplete uncurry version function calling. For

example, choose_curry(one) should be infered as int -> int but choose(one) just fail in infering.

Tested by Bo You

https://www.hackerrank.com/stoundmire

