Interval Selection

Given a set of n intervals, find the size of its largest possible subset of intervals such that no three intervals in the subset share a common point.

Input Format

The first line contains an integer, s, denoting the number of interval sets you must find answers for. The $s \cdot(n+1)$ subsequent lines describe each of the s interval sets as follows:

1. The first line contains an integer, n, denoting the number of intervals in the list.
2. Each line i of the n subsequent lines contains two space-separated integers describing the respective starting (a_{i}) and ending (b_{i}) boundaries of an interval.

Constraints

- $1 \leq s \leq 100$
- $2 \leq n \leq 1000$
- $1 \leq a_{i} \leq b_{i} \leq 10^{9}$

Output Format

For each of the s interval sets, print an integer denoting the size of the largest possible subset of intervals in the given set such that no three points in the subset overlap.

Sample Input

```
4
12
3
4
5
5
5
10
3
6
10
10
3
6
10
```


Sample Output

Explanation

For set s_{0}, all three intervals fall on point 2 so we can only choose any 2 of the intervals. Thus, we print 2 on a new line.

For set s_{1}, all three intervals span the range from 1 to 5 so we can only choose any 2 of them. Thus, we print 2 on a new line.

For set s_{2}, we can choose all 4 intervals without having more than two of them overlap at any given point. Thus, we print 4 on a new line.

For set s_{3}, the intervals $[1,10],[1,3]$, and $[3,6]$ all overlap at point 3 , so we must only choose 2 of these intervals to combine with the last interval, $[7,10]$, for a total of 3 qualifying intervals. Thus, we print 3 on a new line.

