Inverse RMQ

Range Minimum Query is a well-known problem: given an array of distinct integers with size $n=2^{k}$ and m queries, find the minimum element on subsegment $\left[L_{i}, R_{i}\right]$.

One of the most efficient and famous solutions to this problem is a segment tree. A segment tree is a full binary tree with $2 \cdot n-1$ nodes where the leaves contain the values of the original array and each nonleaf node contains the minimum value of its entire subtree.

Usually, a segment tree is represented as an array of integers with $2 \cdot n-1$ elements. The left child of the $i^{t h}$ node is in the $(2 \cdot i+1)^{\text {th }}$ cell, and the right child is in the $(2 \cdot i+2)^{t h}$ cell. For example, $A=[1,1,3,1,2,3,4]$ represents the following segment tree where the first number in a node describes the array index, i, in A and the second number denotes the value stored at index i (which corresponds to the minimum value in that node's subtree):

You've just used n distinct integers to construct your first segment tree and saved it as an array, A, of $2 \cdot n-1$ values. Unfortunately, some evil guy came and either shuffled or altered the elements in your array. Can you use the altered data to restore the original array? If no, print No on a new line; otherwise, print two lines where the first line contains the word YES and the second line contains $2 \cdot n-1$ spaceseparated integers denoting the array's original values. If there are several possible original arrays, print the lexicographically smallest one.

Input Format

The first line contains a single integer, n, denoting the size of the array.
The second line contains $2 \cdot n-1$ space-separated integers denoting the shuffled values of the segment tree.

Constraints

- $1 \leq n \leq 2^{18}$
- n is a power of two.
- Each value in the segment tree is between -10^{9} and 10^{9}.

Output Format

Print No if this array could not be constructed by shuffling some segment tree. Otherwise, print YES on the first line, and $2 \cdot n-1$ space-separated integers describing the respective values of the original array on the second line. If there are several possible answers, print the lexicographically smallest one.

Sample Input 0

4
$\begin{array}{lllllll}3 & 1 & 3 & 1 & 2 & 4 & 1\end{array}$

Sample Output 0

```
YES
```


Explanation 0

This is the same segment tree shown in the Problem Statement above.
Sample Input 1

```
2
1 1 1
```


Sample Output 1

```
    NO
```


Explanation 1

A segment tree with three nodes would consist of a root, a left child, and a right child. Because all three numbers in this array are the same and the leaves of the segment tree must be n distinct integers, it's not possible to reconstruct the original array.

