Consider the following pseudocode, run on an array $A=\left[a_{0}, a_{1}, \ldots, a_{n-1}\right]$ of length n :

```
rep := 0
while A not empty:
    B := []
    for }x\mathrm{ in A, y in A:
        if x != y: append absolute_value(x - y) to B
    A := B
    rep := rep + 1
```

Given the values of n and array A, compute and print the final value of $r e p$ after the pseudocode above terminates; if the loop will never terminate, print -1 instead.

Input Format

The first line contains a single integer, n, denoting the length of array A.
The second line contains n space-separated integers describing the respective values of $a_{0}, a_{1}, \ldots, a_{n-1}$.

Constraints

- $1 \leq n \leq 10^{5}$
- $1 \leq a_{i} \leq 5 \times 10^{4} \forall 1 \leq i \leq n$

Output Format

Print the final value of rep after the pseudocode terminates; if the loop will never terminate, print -1 instead.

Sample Input 0

```
3
1 3 4
```


Sample Output 0

4

Explanation 0

After the first loop, A becomes $[2,3,2,1,3,1]$. After the second loop, the array only contains 1 's and 2 's. After the third loop, the array only contains 1's. After the fourth loop, the array is empty. Because the value of rep is incremented after each loop, rep $=4$ at the time the loop terminates. Thus, we print 4 as our answer.

