Jack goes to Rapture

Jack has just moved to a new city called Rapture. He wants to use the public public transport system. The fare rules are as follows:

1. Each pair of connected stations has a fare assigned to it regardless of direction of travel.
2. If Jack travels from station A to station B, he only has to pay the difference between (the fare from A to B) and (the cumulative fare paid to reach station A), [fare (A, B) - total fare to reach station A]. If the difference is negative, travel is free of cost from A to B.

Jack is low on cash and needs your help to figure out the most cost efficient way to go from the first station to the last station. Given the number of stations $g _$nodes (numbered from 1 to $g _$nodes), and the fares (weights) between the $g_{-} e d g e s$ pairs of stations that are connected, determine the lowest fare from station 1 to station $g _$nodes.

```
Example
g_nodes = 4
g_from = [1, 1, 2, 3]
g_to = [2,3,4,4]
g_weight = [20, 5, 30, 40]
```

The graph looks like this:

Travel from station $1 \rightarrow 2 \rightarrow 4$ costs 20 for the first segment ($1 \rightarrow 2$) then the cost differential, an additional $30-20=10$ for the remainder. The total cost is 30 .

Travel from station $1 \rightarrow 3 \rightarrow 4$ costs 5 for the first segment, then an additional $40-5=35$ for the remainder, a total cost of 40 .

The lower priced option costs 30 .

Function Description

Complete the getCost function in the editor below.
getCost has the following parameters:

- int g_nodes: the number of stations in the network
- int g_from[g_edges]: end stations of a bidirectional connection
- int g_to[g_edges]: g_{-}from $[i]$ is connected to $g_{-} t o[i]$ at cost $g_{-} w e i g h t[i]$
- int g_weight[g_edges]: the cost of travel between associated stations
- int or string: the cost of the lowest priced route from station 1 to station $g _n o d e s$ or NO PATH EXISTS. No return value is expected.

Input Format

The first line contains two space-separated integers, $g _$nodes and $g _$edges, the number of stations and the number of connections between them.
Each of the next $g_{-} e d g e s$ lines contains three space-separated integers, $g_{-} f r o m, g_{-} t o$ and $g_{-} w e i g h t$, the connected stations and the fare between them.

Constraints

- $1 \leq$ g_nodes ≤ 50000
- $1 \leq$ g_edges ≤ 500000
- $1 \leq g _w e i g h t[i] \leq 10^{7}$

Sample Input 0

```
5 5
1260
3 570
14120
4 5 150
2 3 80
```


Sample Output 0

```
80
```


Explanation 0

There are two ways to go from first station to last station.

- $1 \rightarrow 2 \rightarrow 3 \rightarrow 5$
- $1 \rightarrow 4 \rightarrow 5$

For the first path, Jack first pays 60 units of fare to go from station 1 to 2 . Next, Jack has to pay $80-60=20$ units to go from 2 to 34 . Now, to go from 3 to 5 , Jack has to pay $70-(60+20)=-10$ units, but since this is a negative value, Jack pays 0 units to go from 3 to 5 . Thus the total cost of this path is $(60+20)=80$ units.

For the second path, Jack pays 120 units to reach station 4 from station 1 . To go from station 4 to 5 , Jack has to pay $150-120=30$ units. Thus the total cost becomes $(120+30)=150$ units. So, the first path is the most cost efficient, with a cost of 80 .

Sample Input 1

```
5 6
1230
```

```
3 50
4 70
4 5 90
370
3 85
```


Sample Output 1

85

Explanation 1

Travel starts at node 1 and there are two paths to node 3 that cost either 50 or 70 . Taking the route from 3 through 4 to 5 brings the cost up to 90 , while going directly from 3 to 5 costs only 85 .

