
1/2

Java 1D Array (Part

2)

Let's play a game on an array! You're standing at index of an -element array named . From

some index (where), you can perform one of the following moves:

Move Backward: If cell exists and contains a , you can walk back to cell .

Move Forward:

If cell contains a zero, you can walk to cell .

If cell contains a zero, you can jump to cell .

If you're standing in cell or the value of , you can walk or jump off the end

of the array and win the game.

In other words, you can move from index to index , , or as long as the destination

index is a cell containing a . If the destination index is greater than , you win the game.

Function Description

Complete the canWin function in the editor below.

canWin has the following parameters:

int leap: the size of the leap

int game[n]: the array to traverse

Returns

boolean: true if the game can be won, otherwise false

Input Format

The first line contains an integer, , denoting the number of queries (i.e., function calls).

The subsequent lines describe each query over two lines:

1. The first line contains two space-separated integers describing the respective values of and .

2. The second line contains space-separated binary integers (i.e., zeroes and ones) describing the

respective values of .

Constraints

It is guaranteed that the value of is always .

2/2

Sample Input

STDIN Function

----- --------

4 q = 4 (number of queries)

5 3 game[] size n = 5, leap = 3 (first query)

0 0 0 0 0 game = [0, 0, 0, 0, 0]

6 5 game[] size n = 6, leap = 5 (second query)

0 0 0 1 1 1 . . .

6 3

0 0 1 1 1 0

3 1

0 1 0

Sample Output

YES

YES

NO

NO

Explanation

We perform the following queries:

1. For and , we can walk and/or jump to the end of the array because

every cell contains a . Because we can win, we return true.

2. For and , we can walk to index and then jump

 units to the end of the array. Because we can win, we return true.

3. For and , there is no way for us to get past the three consecutive

ones. Because we cannot win, we return false.

4. For and , there is no way for us to get past the one at index . Because

we cannot win, we return false.

