
1/3

Java Annotations

Java annotation can be used to define the metadata of a Java class or class element. We can use Java

annotation at the compile time to instruct the compiler about the build process. Annotation is also used at

runtime to get insight into the properties of class elements.

Java annotation can be added to an element in the following way:

@Entity

Class DemoClass{

}

We can also set a value to the annotation member. For example:

@Entity(EntityName="DemoClass")

Class DemoClass{

}

In Java, there are several built-in annotations. You can also define your own annotations in the following

way:

@Target(ElementType.METHOD)

@Retention(RetentionPolicy.RUNTIME)

@interface FamilyBudget {

 String userRole() default "GUEST";

}

Here, we define an annotation , where is the only member in that custom

annotation. The takes only type values, and the default is "GUEST". If we do not define

the value for this annotation member, then it takes the default. By using @Target, we can specify where

our annotation can be used. For example, the annotation can only be used with the

method in a class. @Retention defines whether the annotation is available at runtime. To learn more

about Java annotation, you can read the tutorial and oracle docs.

Take a look at the following code segment:

@Target(ElementType.METHOD)

@Retention(RetentionPolicy.RUNTIME)

@interface FamilyBudget {

 String userRole() default "GUEST";

}

class FamilyMember {

 public void seniorMember(int budget, int moneySpend) {

 System.out.println("Senior Member");

 System.out.println("Spend: " + moneySpend);

 System.out.println("Budget Left: " + (budget - moneySpend));

 }

 public void juniorUser(int budget, int moneySpend) {

https://docs.oracle.com/javase/tutorial/java/annotations/
http://docs.oracle.com/javase/7/docs/api/java/lang/annotation/RetentionPolicy.html

2/3

 System.out.println("Junior Member");

 System.out.println("Spend: " + moneySpend);

 System.out.println("Budget Left: " + (budget - moneySpend));

 }

}

public class Solution {

 public static void main(String[] args) {

 Scanner in = new Scanner(System.in);

 int testCases = Integer.parseInt(in.nextLine());

 while (testCases > 0) {

 String role = in.next();

 int spend = in.nextInt();

 try {

 Class annotatedClass = FamilyMember.class;

 Method[] methods = annotatedClass.getMethods();

 for (Method method : methods) {

 if (method.isAnnotationPresent(FamilyBudget.class)) {

 FamilyBudget family = method

 .getAnnotation(FamilyBudget.class);

 String userRole = family.userRole();

 int budgetLimit = family.budgetLimit();

 if (userRole.equals(role)) {

 if(spend<=budgetLimit){

 method.invoke(FamilyMember.class.newInstance(),

 budgetLimit, spend);

 }else{

 System.out.println("Budget Limit Over");

 }

 }

 }

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 testCases--;

 }

 }

}

Here, we partially define an annotation, and a class, . In this problem,

we give the user role and the amount of money that a user spends as inputs. Based on the user role, you

have to call the appropriate method in the class. If the amount of money spent is over

the budget limit for that user role, it prints Budget Limit Over .

Your task is to complete the annotation and the class so that the

 class works perfectly with the defined constraints.

Note: You must complete the incomplete lines in the editor. You are not allowed to change, delete or

modify any other lines. To restore the original code, click on the top-left button on the editor and create a

new buffer.

Input Format

The first line of input contains an integer representing the total number of test cases. Each test case

contains a string and an integer separated by a space on a single line in the following format:

UserRole MoneySpend

Constraints

3/3

Name contains only lowercase English letters.

Output Format

Based on the user role and budget outputs, output the contents of the certain method. If the amount of

money spent is over the budget limit, then output Budget Limit Over .

Sample Input

3

SENIOR 75

JUNIOR 45

SENIOR 40

Sample Output

Senior Member

Spend: 75

Budget Left: 25

Junior Member

Spend: 45

Budget Left: 5

Senior Member

Spend: 40

Budget Left: 60

