Java BitSet

Java's BitSet class implements a vector of bit values (i.e.: false (0) or true (1)) that grows as needed, allowing us to easily manipulate bits while optimizing space (when compared to other collections). Any element having a bit value of 1 is called a set bit.

Given 2 BitSets, B_{1} and B_{2}, of size N where all bits in both BitSets are initialized to 0 , perform a series of M operations. After each operation, print the number of set bits in the respective BitSets as two space-separated integers on a new line.

Input Format

The first line contains 2 space-separated integers, N (the length of both BitSets B_{1} and B_{2}) and M (the number of operations to perform), respectively.
The M subsequent lines each contain an operation in one of the following forms:

- AND $<$ set $><$ set $>$
- OR <set> <set>
- XOR <set> <set>
- FLIP < set> <index>
- SET < set> <index>

In the list above, $<$ set $>$ is the integer 1 or 2 , where 1 denotes B_{1} and 2 denotes B_{2}. $<$ index $>$ is an integer denoting a bit's index in the BitSet corresponding to $<$ set $>$.

For the binary operations $A N D, O R$, and $X O R$, operands are read from left to right and the BitSet resulting from the operation replaces the contents of the first operand. For example:

```
AND 21
```

B_{2} is the left operand, and B_{1} is the right operand. This operation should assign the result of $B_{2} \wedge B_{1}$ to B_{2}.

Constraints

- $1 \leq N \leq 1000$
- $1 \leq M \leq 10000$

Output Format

After each operation, print the respective number of set bits in BitSet B_{1} and BitSet B_{2} as 2 spaceseparated integers on a new line.

Sample Input

Sample Output

```
0
10
1 1
12
```


Explanation

Initially: $N=5, M=4, B_{1}=\{0,0,0,0,0\}$, and $B_{2}=\{0,0,0,0,0\}$. At each step, we print the respective number of set bits in B_{1} and B_{2} as a pair of space-separated integers on a new line.
$M_{0}=A N D 12$
$B_{1}=B_{1} \wedge B_{2}=\{0,0,0,0,0\} \wedge\{0,0,0,0,0\}=\{0,0,0,0,0\}$
$B_{1}=\{0,0,0,0,0\}, B_{2}=\{0,0,0,0,0\}$
The number of set bits in B_{1} and B_{2} is 0 .
$M_{1}=$ SET 14
Set $B_{1}[4]$ to true (1).
$B_{1}=\{0,0,0,0,1\}, B_{2}=\{0,0,0,0,0\}$.
The number of set bits in B_{1} is 1 and B_{2} is 0 .
$M_{2}=F L I P 22$
Flip $B_{2}[2]$ from false (0) to true (1).
$B_{1}=\{0,0,0,0,1\}, B_{2}=\{0,0,1,0,0\}$.
The number of set bits in B_{1} is 1 and B_{2} is 1 .
$M_{3}=O R 21$
$B_{2}=B_{2} \vee B_{1}=\{0,0,1,0,0\} \vee\{0,0,0,0,1\}=\{0,0,1,0,1\}$.
$B_{1}=\{0,0,0,0,1\}, B_{2}=\{0,0,1,0,1\}$.
The number of set bits in B_{1} is 1 and B_{2} is 2 .

