Java Exception Handling

You are required to compute the power of a number by implementing a calculator. Create a class MyCalculator which consists of a single method long power(int, int). This method takes two integers, n and p, as parameters and finds n^{p}. If either n or p is negative, then the method must throw an exception which says " n or p should not be negative". Also, if both n and p are zero, then the method must throw an exception which says " n and p should not be zero."

For example, -4 and -5 would result in
java.lang.Exception: n or p should not be negative.
Complete the function power in class MyCalculator and return the appropriate result after the power operation or an appropriate exception as detailed above.

Input Format

Each line of the input contains two integers, n and p. The locked stub code in the editor reads the input and sends the values to the method as parameters.

Constraints

- $-10 \leq n \leq 10$
- $-10 \leq p \leq 10$

Output Format

Each line of the output contains the result n^{p}, if both n and p are positive. If either n or p is negative, the output contains " n and p should be non-negative". If both n and p are zero, the output contains "n and p should not be zero.". This is printed by the locked stub code in the editor.

Sample Input 0

```
3 5
24
0
-1 -2
-1 3
```


Sample Output 0

```
243
16
java.lang.Exception: n and p should not be zero.
java.lang.Exception: n or p should not be negative.
java.lang.Exception: n or p should not be negative.
```


Explanation 0

- In the first two cases, both n and p are postive. So, the power function returns the answer correctly.
- In the third case, both n and p are zero. So, the exception, " n and p should not be zero.", is printed.
- In the last two cases, at least one out of n and p is negative. So, the exception, "n or p should not be negative.", is printed for these two cases.

