## Jeanie's Route

Byteland has $N$ cities (numbered from 1 to $N$ ) and $N-1$ bidirectional roads. It is guaranteed that there is a route from any city to any other city.

Jeanie is a postal worker who must deliver $K$ letters to various cities in Byteland. She can start and end her delivery route in any city. Given the destination cities for $K$ letters and the definition of each road in Byteland, find and print the minimum distance Jeanie must travel to deliver all $K$ letters.

Note: The letters can be delivered in any order.

## Input Format

The first line contains two space-separated integers, $N$ (the number of cities) and $K$ (the number of letters), respectively.
The second line contains $K$ space-separated integers describing the delivery city for each letter. Each line $i$ of the $N-1$ subsequent lines contains 3 space-separated integers describing a road as $u_{i} v_{i} d_{i}$, where $d_{i}$ is the distance (length) of the bidirectional road between cities $u_{i}$ and $v_{i}$.

## Constraints

- $2 \leq K \leq N \leq 10^{5}$
- $1 \leq d_{i} \leq 10^{3}$
- Byteland is a weighted undirected acyclic graph.


## Output Format

Print the minimum distance Jeanie must travel to deliver all $K$ letters.

## Sample Input 0

```
5 3
34
1 2 1
2 2
2 4 2
3 3
```


## Sample Output 0

6

## Explanation 0

Jeanie has 3 letters she must deliver to cities 1, 3, and 4 in the following map of Byteland:


One of Jeanie's optimal routes is $\underbrace{3 \rightarrow 2}_{2} \overbrace{\rightarrow 1}^{1} \underbrace{\rightarrow 2}_{1} \overbrace{\rightarrow}^{2}$, for a total distanced traveled of $2+1+1+2=6$
. Thus, we print 6 on a new line.

