Jesse and Cookies HackerRankil

Jesse loves cookies and wants the sweetness of some cookies to be greater than value k. To do this, two
cookies with the least sweetness are repeatedly mixed. This creates a special combined cookie with:

sweetness = (1x Least sweet cookie + 2X 2nd least sweet cookie).
This occurs until all the cookies have a sweetness > k.

Given the sweetness of a humber of cookies, determine the minimum number of operations required. If it
is not possible, return —1.

Example
k=9
A=1[2,7,3,6,4,6]

The smallest values are 2, 3.

Remove them then return 2 4+ 2 x 3 = 8 to the array. Now A = [8,7,6,4, 6].
Remove 4, 6 and return 4 + 6 X 2 = 16 to the array. Now A = [16, 8,7, 6].
Remove 6,7, return 6 +2 x 7 = 20 and A = [20, 16, 8, 7].

Finally, remove 8,7 and return 7+ 2 x 8 = 23 to A. Now A = [23, 20, 16].
All values are > k = 9 so the process stops after 4 iterations. Return 4.

Function Description
Complete the cookies function in the editor below.

cookies has the following parameters:

e int k: the threshold value

e int A[n]: an array of sweetness values
Returns

e int: the number of iterations required or —1
Input Format

The first line has two space-separated integers, n and k, the size of A[] and the minimum required
sweetness respectively.

The next line contains n space-separated integers, A[i].
Constraints

1<n<10°
0<k<10°
0 < Afi] < 10°

Sample Input

1/2



STDIN Function

6 7
1239 10 12

Sample Output

Explanation

Combine the first two cookies to create a cookie with sweetness =1 xXx1+2x2=5

After this operation, the cookies are 3,5,9,10,12.

Then, combine the cookies with sweetness 3 and sweetness 9, to create a cookie with resulting
sweetness=1x3+2x5=13

Now, the cookies are 9,10,12,13.

All the cookies have a sweetness > 7.

Thus, 2 operations are required to increase the sweetness.

2/2



