## John and GCD list

John is new to Mathematics and does not know how to calculate GCD of numbers. So he wants you to help him in a few GCD calculations. John has a list $A$ of numbers, indexed 1 to $N$. He wants to create another list B having $N+1$ numbers, indexed from 1 to $N+1$, and having the following property:
$\mathrm{GCD}(\mathrm{B}[\mathrm{i}], \mathrm{B}[\mathrm{i}+1])=\mathrm{A}[\mathrm{i}], \forall 1 \leq \mathrm{i} \leq \mathrm{N}$
As there can be many such lists, John wants to know the list $B$ in which sum of all elements is minimum.
It is guaranteed that such a list will always exist.

## Input Format

The first line contains an integer $T$, i.e., the number of the test cases. $T$ testcases follow.
The first line of each test case contains an integer $N$, i.e., the number of elements in the array.
The second line of each test case contains $N$ space separated integers that denote the elements of the list A.

## Output Format

For each test case, print in a new line the list $B$ such that each element is separated by a single space.

## Constraints

$1 \leq T \leq 10$
$2 \leq N \leq 10^{3}$
$1 \leq A[i] \leq 10^{4}$
$1 \leq B[i]$

## Sample Input

```
2
3
2 3
3
10 5
```


## Sample Output

```
126 3
5}101010
```


## Explanation

For the first testcase,

```
GCD (1,2) = 1
GCD (2,6) = 2
GCD (6,3) = 3
sum = 1+2+6+3 = 12 which is minimum among all possible list B
```

For the second testcase,

