Journey to the Moon

The member states of the UN are planning to send 2 people to the moon. They want them to be from different countries. You will be given a list of pairs of astronaut ID's. Each pair is made of astronauts from the same country. Determine how many pairs of astronauts from different countries they can choose from.

Example

$n=4$
astronaut $=[1,2],[2,3]$
There are 4 astronauts numbered 0 through 3 . Astronauts grouped by country are $[0]$ and $[1,2,3]$. There are 3 pairs to choose from: $[0,1],[0,2]$ and $[0,3]$.

Function Description

Complete the journeyToMoon function in the editor below.
journeyToMoon has the following parameter(s):

- int n : the number of astronauts
- int astronaut[p][2]: each element astronaut $[i]$ is a 2 element array that represents the ID's of two astronauts from the same country

Returns

- int: the number of valid pairs

Input Format

The first line contains two integers n and p, the number of astronauts and the number of pairs. Each of the next p lines contains 2 space-separated integers denoting astronaut ID's of two who share the same nationality.

Constraints

- $1 \leq n \leq 10^{5}$
- $1 \leq p \leq 10^{4}$

Sample Input 0

```
5 3
0 1
2 3
04
```


Sample Output 0

Explanation 0

Persons numbered $[0,1,4]$ belong to one country, and those numbered $[2,3]$ belong to another. The UN has 6 ways of choosing a pair:
[0, 2], [0, 3], [1, 2], [1, 3], [4, 2], [4, 3]

Sample Input 1

41
02

Sample Output 1

5

Explanation 1

Persons numbered [0,2] belong to the same country, but persons 1 and 3 don't share countries with anyone else. The UN has 5 ways of choosing a pair:
$[0,1],[0,3],[1,2],[1,3],[2,3]$

