HackerRank

King Richard's Knights

King Richard is leading a troop of N^2 knights into battle! Being very organized, he labels his knights $K_0, K_1, \ldots, K_{N^2-1}$ and arranges them in an $N \times N$ square formation, demonstrated below:

ł	N columns							
	K ₀	K ₁	<i>K</i> ₂		<i>K</i> _{<i>N</i>-1}			
	K_{N}	<i>K</i> _{<i>N</i>+1}	<i>K</i> _{<i>N</i>+2}		K _{2N-1}			
	<i>K</i> _{2N}	<i>K</i> _{2<i>N</i>+1}	K _{2N+2}		<i>K</i> _{3N-1}	N rows		
	<i>K</i> _{<i>N</i>·(<i>N</i>-1)}	K _{N•(N-1)+1}	K _{N•(N-1)+2}		<i>K</i> _{<i>N</i>²-1}			

Before the battle begins, he wants to test how well his knights follow instructions. He issues S drill commands, where each command follows the format $a_i b_i d_i$ and is executed like so:

• All knights in the square having the top-left corner at location (a_i, b_i) and the bottom-right corner at location $(a_i + d_i, b_i + d_i)$ rotate 90° in the clockwise direction. Recall that some location (r, c) denotes the cell located at the intersection of row r and column c. For example:

You must follow the commands sequentially. *The square for each command is completely contained within the square for the previous command*. Assume all knights follow the commands perfectly.

After performing all S drill commands, it's time for battle! King Richard chooses knights $K_{w_1}, K_{w_2}, \ldots, K_{w_L}$ for his first wave of attack; however, because the knights were reordered by the drill commands, he's not sure where his chosen knights are!

As his second-in-command, you must find the locations of the knights. For each knight K_{w_1} ,

 K_{w_2}, \ldots, K_{w_L} , print the knight's *row* and *column* locations as two space-separated values on a new line. Input Format

This is broken down into three parts:

- 1. The first line contains a single integer, N_{\cdot}
- 2. The second line contains a single integer, S.
 - Each line i of the S subsequent lines describes a command in the form of three space-separated integers corresponding to a_i , b_i , and d_i , respectively.
- 3. The next line contains a single integer, L.
 - Each line j of the L subsequent lines describes a knight the King wants to find in the form of a single integer corresponding to w_j .

Constraints

- $1 \leq S \leq 2 \cdot 10^5$
- $7 \leq N \leq 3 \cdot 10^7$
- $1 \leq a_i, b_i \leq N$
- $0 \leq d_i < N$
- $a_{i-1} \leq a_i$ and $a_i + d_i \leq a_{i-1} + d_{i-1}$
- $b_{i-1} \leq b_i$ and $b_i + d_i \leq b_{i-1} + d_{i-1}$
- $1 \leq L \leq 2 \cdot 10^5$
- $0 \le w_j < N^2$

Subtask

+ $7 \leq N \leq 3000$ for 25% of the maximum score.

Output Format

Print L lines of output, where each line j contains two space-separated integers describing the respective row and column values where knight K_{w_i} is located.

Sample Input

7			
4			
1 2 4			
2 3 3			
3 4 1			
3 4 0			
7			
0			
6			
9			
-			

Sample Output

Explanation

The following diagram demonstrates the sequence of commands:

Click here to download a larger image.

In the final configuration:

- Knight K_0 is at location (1,1)
- Knight K_6 is at location (1,7)
- Knight K_9 is at location (4,6)
- Knight K_{11} is at location (3,4)
- Knight K_{24} is at location (2,5)
- Knight K_{25} is at location (2,4)
- Knight K_{48} is at location (7,7)