Kitty's Calculations
 on a Tree

Kitty has a tree, T, consisting of n nodes where each node is uniquely labeled from 1 to n. Her friend Alex gave her q sets, where each set contains k distinct nodes. Kitty needs to calculate the following expression on each set:

$$
\left(\sum_{\{u, v\}} u \cdot v \cdot \operatorname{dist}(u, v)\right) \bmod \left(10^{9}+7\right)
$$

where:

- $\{u, v\}$ denotes an unordered pair of nodes belonging to the set.
- $\operatorname{dist}(u, v)$ denotes the number of edges on the unique (shortest) path between nodes u and v.

Given T and q sets of k distinct nodes, calculate the expression for each set. For each set of nodes, print the value of the expression modulo $10^{9}+7$ on a new line.

Example

edges $=[[1,2],[1,3],[1,4],[3,5],[3,6],[3,7]]$
queries $=[4,5,7]$
The graph looks like this:

There are three pairs that can be created from the query set: $[4,5],[4,7],[5,7]$. The distance from 4 to 5 is 3 , from 4 to 7 is 3 , and from 5 to 7 is 2 .

Now do the summation:

$$
\begin{gathered}
(4 \cdot 5 \cdot \operatorname{dist}(4,5)+4 \cdot 7 \cdot \operatorname{dist}(4,7)+5 \cdot 7 \cdot \operatorname{dist}(5,7)) \bmod \left(10^{9}+7\right) \\
\Rightarrow(4 \cdot 5 \cdot 3+4 \cdot 7 \cdot 3+5 \cdot 7 \cdot 2) \bmod \left(10^{9}+7\right) \\
\Rightarrow 214
\end{gathered}
$$

Input Format

The first line contains two space-separated integers, the respective values of n (the number of nodes in tree T) and q (the number of nodes in the query set).
Each of the $n-1$ subsequent lines contains two space-separated integers, a and b, that describe an
undirected edge between nodes a and b.
The $2 \cdot q$ subsequent lines define each set over two lines in the following format:

1. The first line contains an integer, k, the size of the set.
2. The second line contains k space-separated integers, the set's elements.

Constraints

- $1 \leq n \leq 2 \cdot 10^{5}$
- $1 \leq a, b \leq n$
- $1 \leq q \leq 10^{5}$
- $1 \leq k_{i} \leq 10^{5}$
- The sum of k_{i} over all q does not exceed $2 \cdot 10^{5}$.
- All elements in each set are distinct.

Subtasks

- $1 \leq n \leq 2000$ for 24% of the maximum score.
- $1 \leq n \leq 5 \cdot 10^{4}$ for 45% of the maximum score.
- $1 \leq n \leq 2 \cdot 10^{5}$ for 100% of the maximum score.

Output Format

Print q lines of output where each line i contains the expression for the $i^{\text {th }}$ query, modulo $10^{9}+7$.

Sample Input 0

```
7
1 2
1 3
14
3
36
37
24
45
```

2
1
5
3

Sample Output 0

```
    16
    0
    106
```


Explanation 0

Tree T looks like this:

We perform the following calculations for $q=3$ sets:

- Set 0 : Given set $\{2,4\}$, the only pair we can form is $(u, v)=(2,4)$, where $\operatorname{dist}(2,4)=2$. We then calculate the following answer and print it on a new line:

$$
\begin{gathered}
(2 \cdot 4 \cdot \operatorname{dist}(2,4)) \bmod \left(10^{9}+7\right) \\
\Rightarrow(2 \cdot 4 \cdot 2) \bmod \left(10^{9}+7\right) \\
\Rightarrow 16
\end{gathered}
$$

- Set 1: Given set $\{5\}$, we cannot form any pairs because we don't have at least two elements. Thus, we print 0 on a new line.
- Set 2: Given set $\{2,4,5\}$, we can form the pairs $(2,4),(2,5)$, and $(4,5)$. We then calculate the following answer and print it on a new line:

$$
\begin{gathered}
(2 \cdot 4 \cdot \operatorname{dist}(2,4)+2 \cdot 5 \cdot \operatorname{dist}(2,5)+4 \cdot 5 \cdot \operatorname{dist}(4,5)) \bmod \left(10^{9}+7\right) \\
\Rightarrow(2 \cdot 4 \cdot 2+2 \cdot 5 \cdot 3+4 \cdot 5 \cdot 3) \bmod \left(10^{9}+7\right) \\
\Rightarrow 106
\end{gathered}
$$

