Kth Ancestor

A tree of P nodes is an un-directed connected graph having $P-1$ edges. Let us denote R as the root node. If A is a node such that it is at a distance of L from R, and B is a node such that it is at at distance of $L+1$ from R and A is connected to B, then we call A as the parent of B.

Similarly, if A is at a distance of L from R and B is at a distance of $L+K$ from R and there is a path of length K from A to B, then we call A as the $K^{\text {th }}$ parent of B.

Susan likes to play with graphs and Tree data structure is one of her favorites. She has designed a problem and wants to know if anyone can solve it. Sometimes she adds or removes a leaf node. Your task is to figure out the $K^{\text {th }}$ parent of a node at any instant.

Input Format

The first line contain an integer T denoting the number of test cases. T test cases follow. First line of each test case contains an integer P, the number of nodes in the tree. P lines follows each containing two integers X and Y separated by a single space denoting Y as the parent of X. If Y is 0 , then X is the root node of the tree. (0 is for namesake and is not in the tree).
The next line contains an integer Q, the number of queries.
Q lines follow each containing a query.

- $0 Y X: X$ is added as a new leaf node whose parent is Y. X is not in the tree while Y is in.
- $1 X$: This tells that leaf node X is removed from the tree. X is a leaf in the tree.
- $2 X K$: In this query output the $K^{\text {th }}$ parent of $X . X$ is a node in the tree.

Note

- Each node index is any number between 1 and 10^{5} i.e., a tree with a single node can have its root indexed as 10^{5}

Constraints

$1 \leq T \leq 3$
$1 \leq P \leq 10^{5}$
$1 \leq Q \leq 10^{5}$
$1 \leq X \leq 10^{5}$
$0 \leq Y \leq 10^{5}$
$1 \leq K \leq 10^{5}$

Output Format

For each query of type 2 , output the $K^{\text {th }}$ parent of X. If $K^{\text {th }}$ parent doesn't exist, output 0 and if the node doesn't exist, output 0.

Sample Input

Sample Output

```
2
2
5
0
0
8
0
```


Explanation

There are 2 test cases. The first test case has 7 nodes with 2 as its root. There are 10 queries

- 0515 -> 15 is added as a leaf node to 5 .
- 2152 -> 2 nd parent of 15 is $15->5->2$ is 2 .
- 13 -> leaf node 3 is removed from the tree.
- 01520 -> 20 is added as a leaf node to 15 .
- 02013 -> 13 is added as a leaf node to 20 .
- 2134 -> 4th parent of 13 is 2 .
- 2133 -> 3rd parent of 13 is 5 .
- 2610 -> there is no 10th parent of 6 and hence 0 .
- 2111 -> 11 is not a node in the tree, hence 0 .
- 291 -> 9's parent is 8 .
the second testcase has a tree with only 1 node (10000).
- 0100004 -> 4 is added as a leaf node to 10000 .
- 14 -> 4 is removed.
- 241 -> as 4 is already removed, answer is 0 .

