Kundu and Tree

HackerRank

Kundu is true tree lover. Tree is a connected graph having *N* vertices and *N*-1 edges. Today when he got a tree, he colored each edge with one of either red(r) or black(b) color. He is interested in knowing how many triplets(a,b,c) of vertices are there , such that, there is atleast one edge having red color on all the three paths i.e. from vertex *a* to *b*, vertex *b* to *c* and vertex *c* to *a*. Note that (a,b,c), (b,a,c) and all such permutations will be considered as the same triplet.

If the answer is greater than $10^9 + 7$, print the answer modulo (%) $10^9 + 7$.

Input Format

The first line contains an integer N, i.e., the number of vertices in tree.

The next N-1 lines represent edges: 2 space separated integers denoting an edge followed by a color of the edge. A color of an edge is denoted by a small letter of English alphabet, and it can be either red(r) or black(b).

Output Format

Print a single number i.e. the number of triplets.

Constraints

 $1 \le N \le 10^5$ A node is numbered between 1 to N.

Sample Input

5			
1	2	b	
2	3	r	
3	4	r	
4	5	b	

Sample Output

4

Explanation

Given tree is something like this.

(2,3,4) is one such triplet because on all paths i.e 2 to 3, 3 to 4 and 2 to 4 there is atleast one edge having red color.

(2,3,5), (1,3,4) and (1,3,5) are other such triplets.

Note that (1,2,3) is NOT a triplet, because the path from 1 to 2 does not have an edge with red color.