Largest Permutation

You are given an unordered array of unique integers incrementing from 1. You can swap any two elements a limited number of times. Determine the largest lexicographical value array that can be created by executing no more than the limited number of swaps.

Example

$\operatorname{arr}=[1,2,3,4]$
$k=1$
The following arrays can be formed by swapping the 1 with the other elements:

```
[2,1,3,4]
[3,2,1,4]
[4,2,3,1]
```

The highest value of the four (including the original) is $[4,2,3,1]$. If $k \geq 2$, we can swap to the highest possible value: $[4,3,2,1]$.

Function Description

Complete the largestPermutation function in the editor below. It must return an array that represents the highest value permutation that can be formed.
largestPermutation has the following parameter(s):

- int k : the maximum number of swaps
- int arr[n]: an array of integers

Input Format

The first line contains two space-separated integers n and k, the length of arr and the maximum swaps that can be performed. The second line contains n distinct space-separated integers from 1 to n as $\operatorname{arr}[i]$ where $1 \leq \operatorname{arr}[i] \leq n$.

Constraints

$1 \leq n \leq 10^{5}$
$1 \leq k \leq 10^{9}$

Output Format

Print the lexicographically largest permutation you can make with at most k swaps.
Sample Input 0

```
STDIN
Function
----- --------
5 1 n = 5, k = 1
4 2 3 5 1 arr = [4, 2, 3, 5, 1]
```


Sample Output 0

```
5 2 3 4 1
```


Explanation 0

You can swap any two numbers in $[4,2,3,5,1]$ and see the largest permutation is $[5,2,3,4,1]$

Sample Input 1

```
3 1
2 3
```


Sample Output 1

```
3 2
```


Explanation 1

With 1 swap we can get $[1,2,3],[3,1,2]$ and $[2,3,1]$. Of these, $[3,1,2]$ is the largest permutation.

Sample Input 2

```
2 1
```

21

Sample Output 2

```
2 1
```


Explanation 2

We can see that $[2,1]$ is already the largest permutation. We don't make any swaps.

