Larry has been given a permutation of a sequence of natural numbers incrementing from 1 as an array. He must determine whether the array can be sorted using the following operation any number of times:

- Choose any 3 consecutive indices and rotate their elements in such a way that $A B C \rightarrow B C A \rightarrow C A B \rightarrow A B C$.

For example, if $A=\{1,6,5,2,4,3\}$:

```
A rotate
[1,6,5,2,4,3] [6,5,2]
[1,5,2,6,4,3] [5,2,6]
[1,2,6,5,4,3] [5,4,3]
[1,2,6,3,5,4] [6,3,5]
[1,2,3,5,6,4] [5,6,4]
[1,2,3,4,5,6]
YES
```

On a new line for each test case, print yes if A can be fully sorted. Otherwise, print No .

Function Description

Complete the larrysArray function in the editor below. It must return a string, either YES or No. larrysArray has the following parameter(s):

- A: an array of integers

Input Format

The first line contains an integer t, the number of test cases.
The next t pairs of lines are as follows:

- The first line contains an integer n, the length of A.
- The next line contains n space-separated integers $A[i]$.

Constraints

- $1 \leq t \leq 10$
- $3 \leq n \leq 1000$
- $1 \leq A[i] \leq n$
- $A_{\text {sorted }}=$ integers that increment by 1 from 1 to n

Output Format

For each test case, print yes if A can be fully sorted. Otherwise, print no.

Sample Input

```
3
3
1 2
342
2 3 54
```


Sample Output

```
YES
YES
NO
```


Explanation

In the explanation below, the subscript of A denotes the number of operations performed.
Test Case 0 :
$A_{0}=\{3,1,2\} \rightarrow \operatorname{rotate}(3,1,2) \rightarrow A_{1}=\{1,2,3\}$
A is now sorted, so we print yes on a new line.
Test Case 1:
$A_{0}=\{1,3,4,2\} \rightarrow \operatorname{rotate}(3,4,2) \rightarrow A_{1}=\{1,4,2,3\}$.
$A_{1}=\{1,4,2,3\} \rightarrow \operatorname{rotate}(4,2,3) \rightarrow A_{2}=\{1,2,3,4\}$.
A is now sorted, so we print yES on a new line.
Test Case 2:
No sequence of rotations will result in a sorted A. Thus, we print no on a new line.

