Larry's Array

Larry has been given a permutation of a sequence of natural numbers incrementing from ${f 1}$ as an array. He must determine whether the array can be sorted using the following operation any number of times:

• Choose any 3 consecutive indices and rotate their elements in such a way that $ABC \to BCA \to CAB \to ABC$.

For example, if $A = \{1, 6, 5, 2, 4, 3\}$:

```
A rotate
[1,6,5,2,4,3] [6,5,2]
[1,5,2,6,4,3] [5,2,6]
[1,2,6,5,4,3] [5,4,3]
[1,2,6,3,5,4] [6,3,5]
[1,2,3,5,6,4] [5,6,4]
[1,2,3,4,5,6]

YES
```

On a new line for each test case, print $\underline{\mathtt{YES}}$ if A can be fully sorted. Otherwise, print $\underline{\mathtt{NO}}$.

Function Description

Complete the larrysArray function in the editor below. It must return a string, either YES or NO.

larrysArray has the following parameter(s):

• A: an array of integers

Input Format

The first line contains an integer t, the number of test cases.

The next $m{t}$ pairs of lines are as follows:

- The first line contains an integer n, the length of A.
- ullet The next line contains n space-separated integers A[i].

Constraints

- $1 \le t \le 10$
- $3 \le n \le 1000$
- $1 \leq A[i] \leq n$
- ullet $A_{sorted}=$ integers that increment by 1 from 1 to n

Output Format

For each test case, print $\underline{\mathsf{YES}}$ if A can be fully sorted. Otherwise, print $\underline{\mathsf{NO}}$.

Sample Input

```
3
3
1 2
4
1 3 4 2
5
1 2 3 5 4
```

Sample Output

```
YES
YES
NO
```

Explanation

In the explanation below, the subscript of $oldsymbol{A}$ denotes the number of operations performed.

Test Case 0:

```
A_0 = \{3,1,2\} 	o 	ext{rotate}(3,1,2) 	o A_1 = \{1,2,3\}
```

 $oldsymbol{A}$ is now sorted, so we print $oldsymbol{ ext{YES}}$ on a new line.

Test Case 1:

$$A_0 = \{1, 3, 4, 2\} o ext{rotate}(3, 4, 2) o A_1 = \{1, 4, 2, 3\}. \ A_1 = \{1, 4, 2, 3\} o ext{rotate}(4, 2, 3) o A_2 = \{1, 2, 3, 4\}.$$

 $oldsymbol{A}$ is now sorted, so we print $oldsymbol{ves}$ on a new line.

Test Case 2:

No sequence of rotations will result in a sorted A. Thus, we print n_0 on a new line.