Lena developed a sorting algorithm described by the following pseudocode:

```
lena_sort(array nums) {
    if (nums.size <= 1) {
        return nums;
    }
    pivot = nums[0];
    array less;
    array more;
    for (i = 1; i < nums.size; ++i) {
        // Comparison
        if (nums[i] < pivot) {
                less.append(nums[i]);
            }
        else {
            more.append(nums[i]);
        }
    }
    sorted_less = lena_sort(less);
    sorted_more = lena_sort(more);
    ans = sorted_less + pivot + sorted_more;
    return ans;
}
```

We consider a comparison to be any time some nums $[i]$ is compared with pivot.
You must solve q queries where each query i consists of some $l e n_{i}$ and c_{i}. For each query, construct an array of $l e n_{i}$ distinct elements in the inclusive range between 1 and 10^{9} that will be sorted by lena_sort in exactly c_{i} comparisons, then print each respective element of the unsorted array as a single line of $l e n_{i}$ space-separated integers; if no such array exists, print -1 instead.

Input Format

The first line contains a single integer denoting q (the number of queries).
Each line i of the q subsequent lines contains two space-separated integers describing the respective values of $l e n_{i}$ (the length of the array) and c_{i} (the number of comparisons) for query i.

Constraints

- $1 \leq q \leq 10^{5}$
- $1 \leq l e n_{i} \leq 10^{5}$
- $0 \leq c_{i} \leq 10^{9}$
- $1 \leq$ the sum of $l e n_{i}$ over all queries $\leq 10^{6}$

Output Format

Print the answer to each query on a new line. For each query i, print $l e n_{i}$ space-separated integers describing each respective element in an unsorted array that Lena's algorithm will sort in exactly c_{i}

Sample Input 0

```
2
5 6
100
```


Sample Output 0

```
4 2 1 3 5
-1
```


Explanation 0

We perform the following $q=2$ queries:

1. One array with len $=5$ elements is $[4,2,1,3,5]$. The sequence of sorting operations looks like this:

- Run lena_sort on $[4,2,1,3,5]$. Compare pivot $=4$ with $2,1,3$, and 5 for a total of 4 comparisons. We're then left with less $=[2,1,3]$ and more $=[5]$; we only need to continue sorting less, as more is sorted with respect to itself because it only contains one element.
- Run lena_sort on less $=[2,1,3]$. Compare pivot $=2$ with 1 and 3 for a total of 2 comparisons. We're then left with less $=[1]$ and more $=[3]$, so we stop sorting.

We sorted $[4,2,1,3,5]$ in $4+2=6$ comparisons and $c=6$, so we print 42135 on a new line.
2. It's not possible to construct an array with len $=5$ elements that lena_sort will sort in exactly $c=100$ comparisons, so we print -1 on a new line.

Sample Input 1

```
3
1 0
46
32
```


Sample Output 1

```
1
4 3 2 1
2 1 3
```


Explanation 1

We perform the following $q=3$ queries:

1. We want an array with len $=1$ element that lena_sort sorts in $c=0$ comparisons; any array with 1 element is already sorted (i.e., lena_sort performs 0 comparisons), so we choose [1] as our array and print 1 on a new line.
2. One array with len $=4$ elements is $[4,3,2,1]$; sorting it with lena_sort looks like this:

- lena_sort on $[4,3,2,1]$. Compare pivot $=4$ with 3,2 , and 1 for a total of 3 comparisons. We're then left with less $=[3,2,1]$ and more $=[]$; we only need to continue sorting less, as more is empty.
- Run lena_sort on less $=[3,2,1]$. Compare pivot $=3$ with 2 and 1 for a total of 2 comparisons. We're then left with less $=[1,2]$ and more $=[]$, so we only continue sorting less.
- Run lena_sort on less $=[2,1]$. Compare pivot $=2$ with 1 for a total of 1 comparison. We then stop sorting, as less $=[1]$ and more $=[]$.

We sorted $[4,3,2,1]$ in $3+2+1=6$ comparisons and $c=6$, so we print 4321 on a new line.
3. One array with len $=3$ elements is $[2,1,3]$. When we run lena_sort on it, we compare pivot $=2$ with 1 and 3 for a total of 2 comparisons. We're then left with less $=[1]$ and more $=[3]$, so we stop sorting.

We sorted $[2,1,3]$ in 2 comparisons and $c=2$, so we print 213 on a new line.

