Lena Sort HackerRankH

Lena developed a sorting algorithm described by the following pseudocode:

lena sort (array nums) {
if (nums.size <= 1) {
return nums;
}
pivot = nums([0];
array less;
array more;
for (1 = 1; 1 < nums.size; ++1) {
// Comparison
if (nums[i] < pivot) {
less.append (nums[i]);
}
else {
more.append (nums[1]) ;
}
}
sorted less =
sorted more = lena sort (more);
ans = sorted less + pivot + sorted more;

lena_sort (less);

return ans;

We consider a comparison to be any time some numsl[i| is compared with pivot.

You must solve g queries where each query % consists of some len; and ¢;. For each query, construct an
array of len; distinct elements in the inclusive range between 1 and 10° that will be sorted by lena_sort
in exactly ¢; comparisons, then print each respective element of the unsorted array as a single line of
len; space-separated integers; if no such array exists, print -1 instead.

Input Format

The first line contains a single integer denoting q (the number of queries).
Each line % of the g subsequent lines contains two space-separated integers describing the respective
values of len; (the length of the array) and ¢; (the number of comparisons) for query %.

Constraints

1<q¢<10°

1< len; < 10°

0<¢ <10°

1 < the sum of len; over all queries < 10°

Output Format

Print the answer to each query on a new line. For each query %, print len; space-separated integers
describing each respective element in an unsorted array that Lena's algorithm will sort in exactly ¢;

1/3



comparisons; if no such array exists, print -1 instead.
Sample Input 0

56
5 100

Sample Output 0

42135

Explanation O
We perform the following ¢ = 2 queries:
1. One array with len = 5 elements is [4,2,1, 3, 5]. The sequence of sorting operations looks like this:

* Run lena_sort on [4,2,1,3,5]. Compare pivot = 4 with 2, 1, 3, and 5 for a total of 4
comparisons. We're then left with less = [2, 1, 3] and more = [5]; we only need to continue
sorting less, as more is sorted with respect to itself because it only contains one element.

* Run lena_sort on less = [2, 1, 3]. Compare pivot = 2 with 1 and 3 for a total of 2 comparisons.
We're then left with less = [1] and more = [3], so we stop sorting.

We sorted [4,2,1,3,5]in 4+ 2 =6 comparisons and ¢ = 6, so we print 4 2 1 3 5 on a new line.

2. It's not possible to construct an array with len = 5 elements that lena,_sort will sort in exactly
¢ = 100 comparisons, so we print -1 on a new line.

Sample Input 1

w > W
o

Sample Output 1

N B
=W
w N

Explanation 1
We perform the following ¢ = 3 queries:

1. We want an array with len = 1 element that lena_sort sorts in ¢ = 0 comparisons; any array with 1
element is already sorted (i.e., lena_sort performs 0 comparisons), so we choose [1] as our array
and print 1 on a new line.

2. One array with len = 4 elements is [4, 3,2, 1]; sorting it with lena_sort looks like this:

2/3



« lena_sort on [4, 3,2, 1]. Compare pivot = 4 with 3, 2, and 1 for a total of 3 comparisons. We're

then left with less = [3,2, 1] and more = [|; we only need to continue sorting less, as more is
empty.

* Run lena_sort on less = [3,2, 1]. Compare pivot = 3 with 2 and 1 for a total of 2 comparisons.
We're then left with less = [1,2] and more = [|, so we only continue sorting less.

* Run lena,_sort on less = [2,1]. Compare pivot = 2 with 1 for a total of 1 comparison. We then
stop sorting, as less = [1] and more = ).

We sorted [4,3,2,1] in 3+ 2+ 1 = 6 comparisons and ¢ = 6, so we print 4 3 2 1 on a new line.

3. One array with len = 3 elements is [2, 1, 3]. When we run lena_sort on it, we compare pivot = 2
with 1 and 3 for a total of 2 comparisons. We're then left with less = [1] and more = [3], so we stop
sorting.

We sorted [2, 1, 3] in 2 comparisons and ¢ = 2, so we print 2 1 3 on a new line.

3/3



