
1/3

Lena Sort

Lena developed a sorting algorithm described by the following pseudocode:

lena_sort(array nums) {

 if (nums.size <= 1) {

 return nums;

 }

 pivot = nums[0];

 array less;

 array more;

 for (i = 1; i < nums.size; ++i) {

 // Comparison

 if (nums[i] < pivot) {

 less.append(nums[i]);

 }

 else {

 more.append(nums[i]);

 }

 }

 sorted_less = lena_sort(less);

 sorted_more = lena_sort(more);

 ans = sorted_less + pivot + sorted_more;

 return ans;

}

We consider a comparison to be any time some is compared with .

You must solve queries where each query consists of some and . For each query, construct an

array of distinct elements in the inclusive range between and that will be sorted by

in exactly comparisons, then print each respective element of the unsorted array as a single line of

 space-separated integers; if no such array exists, print -1 instead.

Input Format

The first line contains a single integer denoting (the number of queries).

Each line of the subsequent lines contains two space-separated integers describing the respective

values of (the length of the array) and (the number of comparisons) for query .

Constraints

 the sum of over all queries

Output Format

Print the answer to each query on a new line. For each query , print space-separated integers

describing each respective element in an unsorted array that Lena's algorithm will sort in exactly

2/3

comparisons; if no such array exists, print -1 instead.

Sample Input 0

2

5 6

5 100

Sample Output 0

4 2 1 3 5

-1

Explanation 0

We perform the following queries:

1. One array with elements is . The sequence of sorting operations looks like this:

Run on . Compare with , , , and for a total of

comparisons. We're then left with and ; we only need to continue

sorting , as is sorted with respect to itself because it only contains one element.

Run on . Compare with and for a total of comparisons.

We're then left with and , so we stop sorting.

We sorted in comparisons and , so we print 4 2 1 3 5 on a new line.

2. It's not possible to construct an array with elements that will sort in exactly

 comparisons, so we print -1 on a new line.

Sample Input 1

3

1 0

4 6

3 2

Sample Output 1

1

4 3 2 1

2 1 3

Explanation 1

We perform the following queries:

1. We want an array with element that sorts in comparisons; any array with

element is already sorted (i.e., performs comparisons), so we choose as our array

and print 1 on a new line.

2. One array with elements is ; sorting it with looks like this:

3/3

 on . Compare with , , and for a total of comparisons. We're

then left with and ; we only need to continue sorting , as is

empty.

Run on . Compare with and for a total of comparisons.

We're then left with and , so we only continue sorting .

Run on . Compare with for a total of comparison. We then

stop sorting, as and .

We sorted in comparisons and , so we print 4 3 2 1 on a new line.

3. One array with elements is . When we run on it, we compare

with and for a total of comparisons. We're then left with and , so we stop

sorting.

We sorted in comparisons and , so we print 2 1 3 on a new line.

