Leonardo loves primes and created q queries where each query takes the form of an integer, n. For each n, count the maximum number of distinct prime factors of any number in the inclusive range $[1, n]$.

Note: Recall that a prime number is only divisible by 1 and itself, and 1 is not a prime number.

Example

$n=100$
The maximum number of distinct prime factors for values less than or equal to 100 is 3 . One value with 3 distinct prime factors is 30 . Another is 42 .

Function Description

Complete the primeCount function in the editor below.
primeCount has the following parameters:

- int n : the inclusive limit of the range to check

Returns

- int: the maximum number of distinct prime factors of any number in the inclusive range $[0-n]$.

Input Format

The first line contains an integer, q, the number of queries.
Each of the next q lines contains a single integer, n.

Constraints

- $1 \leq q \leq 10^{5}$
- $1 \leq n \leq 10^{18}$

Sample Input

Sample Output

Explanation

1. 1 is not prime and its only factor is itself.
2. 2 has 1 prime factor, 2 .
3. The number 3 has 1 prime factor, 3,2 has 1 and 1 has 0 prime factors.
4. The product of the first four primes is $2 \times 3 \times 5 \times 7=210$. While higher value primes may be a factor of some numbers, there will never be more than 4 distinct prime factors for a number in this range.
