Letter Islands

You are given string s and number k.
Consider a substring p of string s. For each position of string s mark it if there is an occurence of the substring that covers the position. More formally, position i will be marked if there exists such index j that: $j \leq i \leq j+|p|-1$ and $s_{j} s_{j+1} \ldots s_{j+|p|-1}=p$. We will tell p produce x islands if all the marked positions form x groups of contiguous positions.

For example, if we have a string ababaewabaq the substring aba marks the positions $1,2,3,4,5,8,9$, 10; that is XXXXXewXXXq (x denotes marked position). We can see 2 groups of contiguous positions, that is 2 islands. Finally, substring aba produces 2 islands in the string ababaewabaq.

Calculate and print the number of different substrings of string s that produce exactly k islands.

Input Format

The first line contains string $s\left(1 \leq|s| \leq 10^{5}\right)$. The string consists of lowercase letters only. The second line contains an integer $k(1 \leq k \leq|s|)$.

Output Format

Output a single integer - the answer to the problem.

Sample Input

```
abaab
2
```


Sample Output

3

Explanation

All the suitable substrings are: $a, a b, b$.

