You have \mathbf{N} soldiers numbered from 1 to \mathbf{N}. Each of your soldiers is either a liar or a truthful person. You have \mathbf{M} sets of information about them. Each set of information tells you the number of liars among a certain range of your soldiers. Let \mathbf{L} be the total number of your liar soldiers. Since you can't find the exact value of L, you want to find the minimum and maximum value of L.

Input Format

- The first line of the input contains two integers \mathbf{N} and \mathbf{M}.
- Each of next M lines contains three integers:

A B C where the set of soldiers numbered as $\{\mathrm{A}, \mathrm{A}+1, \mathrm{~A}+2, \ldots, \mathrm{~B}\}$, exactly C of them are liars. (1 $<=\mathrm{Ai}<=\mathrm{Bi}<=\mathrm{n}$) and ($0<=\mathrm{Ci}<=\mathrm{Bi}-\mathrm{Ai}$).

Note: \mathbf{N} and \mathbf{M} are not more than 101, and it is guaranteed the given informations is satisfiable.

Output Format

Print two integers Lmin and Lmax to the output.

Sample Input \# 1

```
3
1 2 1
2 3 1
```


Sample Output \#1

```
12
```


Sample Input \#2

```
20 11
3 8 4
196
1 13 9
5 11 5
4 19 12
8 13 5
4 8 4
7 9 2
10}13
7 167
14 194
```


Sample Output \#2

```
13 14
```


Explanation

In the first input, the initial line is "32", i.e. that there are 3 soldiers and we have 2 sets of information.

The next line says there is one liar in the set of soldiers $\{1,2\}$. The final line says there is one liar in the set $\{2,3\}$. There are two possibilities for this scenario: Soldiers number 1 and 3 are liars or soldier number 2 is liar.
So the minimum number of liars is 1 and maximum number of liars is 2 . Hence the answer, 12.

