Library Fine

Your local library needs your help! Given the expected and actual return dates for a library book, create a program that calculates the fine (if any). The fee structure is as follows:

1. If the book is returned on or before the expected return date, no fine will be charged (i.e.: fine $=0$).
2. If the book is returned after the expected return day but still within the same calendar month and year as the expected return date, fine $=15$ Hackos \times (the number of days late).
3. If the book is returned after the expected return month but still within the same calendar year as the expected return date, the fine $=500$ Hackos \times (the number of months late).
4. If the book is returned after the calendar year in which it was expected, there is a fixed fine of 10000 Hackos.

Charges are based only on the least precise measure of lateness. For example, whether a book is due January 1, 2017 or December 31, 2017, if it is returned January 1, 2018, that is a year late and the fine would be 10, 000 Hackos.

Example

$d 1, m 1, y 1=14,7,2018$
$d 2, m 2, y 2=5,7,2018$
The first values are the return date and the second are the due date. The years are the same and the months are the same. The book is $14-5=9$ days late. Return $9 * 15=135$.

Function Description

Complete the libraryFine function in the editor below.
libraryFine has the following parameter(s):

- d1, m1, y1: returned date day, month and year, each an integer
- d2, m2, y2: due date day, month and year, each an integer

Returns

- int: the amount of the fine or 0 if there is none

Input Format

The first line contains 3 space-separated integers, $d 1, m 1, y 1$, denoting the respective day, month, and year on which the book was returned.
The second line contains 3 space-separated integers, $d 2, m 2, y 2$, denoting the respective day, month, and year on which the book was due to be returned.

Constraints

- $1 \leq d 1, d 2 \leq 31$
- $1 \leq m 1, m 2 \leq 12$
- $1 \leq y 1, y 2 \leq 3000$
- It is guaranteed that the dates will be valid Gregorian calendar dates.

Sample Input

```
962015
6 6 2015
```


Sample Output

```
    4 5
```


Explanation

Given the following dates:
Returned: $d 1=9, m 1=6, y 1=2015$
Due: $d 2=6, m 2=6, y 2=2015$
Because $y 2 \equiv y 1$, we know it is less than a year late.
Because $m 2 \equiv m 1$, we know it's less than a month late.
Because $d 2<d 1$, we know that it was returned late (but still within the same month and year).
Per the library's fee structure, we know that our fine will be 15 Hackos \times (\# days late). We then print the result of $15 \times(d 1-d 2)=15 \times(9-6)=45$ as our output.

