Given set $S=\{1,2,3, \ldots, N\}$. Find two integers, A and B (where $A<B$), from set S such that the value of $A \& B$ is the maximum possible and also less than a given integer, K. In this case, $\&$ represents the bitwise AND operator.

Input Format

The first line contains an integer, T, the number of test cases.
Each of the T subsequent lines defines a test case as 2 space-separated integers, N and K, respectively.

Constraints

- $1 \leq T \leq 10^{3}$
- $2 \leq N \leq 10^{3}$
- $2 \leq K \leq N$

Output Format

For each test case, print the maximum possible value of $A \& B$ on a new line.

Sample Input

3	
5	2
8	5
2	2

Sample Output

Explanation

$$
N=5, K=2 S=\{1,2,3,4,5\}
$$

All possible values of A and B are:

1. $\mathrm{A}=1, \mathrm{~B}=2 ; \mathrm{A} \& \mathrm{~B}=0$
2. $\mathrm{A}=1, \mathrm{~B}=3 ; \mathrm{A} \& \mathrm{~B}=1$
3. $\mathrm{A}=1, \mathrm{~B}=4 ; \mathrm{A} \& \mathrm{~B}=0$
4. $\mathrm{A}=1, \mathrm{~B}=5 ; \mathrm{A} \& \mathrm{~B}=1$
5. $\mathrm{A}=2, \mathrm{~B}=3 ; \mathrm{A} \& \mathrm{~B}=2$
6. $\mathrm{A}=2, \mathrm{~B}=4 ; \mathrm{A} \& \mathrm{~B}=0$
7. $\mathrm{A}=2, \mathrm{~B}=5 ; \mathrm{A} \& \mathrm{~B}=0$
8. $\mathrm{A}=3, \mathrm{~B}=4 ; \mathrm{A} \& \mathrm{~B}=0$
9. $\mathrm{A}=3, \mathrm{~B}=5 ; \mathrm{A} \& \mathrm{~B}=1$
10. $\mathrm{A}=4, \mathrm{~B}=5 ; \mathrm{A} \& \mathrm{~B}=4$

The maximum possible value of $A \& B$ that is also $<(K=2)$ is 1 , so we print 1 on a new line.

