BFS: Shortest Reach

Consider an undirected graph consisting of n nodes where each node is labeled from 1 to n and the edge between any two nodes is always of length 6 . We define node s to be the starting position for a BFS.

Given q queries in the form of a graph and some starting node, s, perform each query by calculating the shortest distance from starting node s to all the other nodes in the graph. Then print a single line of $n-1$ space-separated integers listing node s 's shortest distance to each of the $n-1$ other nodes (ordered sequentially by node number); if s is disconnected from a node, print -1 as the distance to that node.

Input Format

The first line contains an integer, q, denoting the number of queries. The subsequent lines describe each query in the following format:

- The first line contains two space-separated integers describing the respective values of n (the number of nodes) and m (the number of edges) in the graph.
- Each line i of the m subsequent lines contains two space-separated integers, u and v, describing an edge connecting node u to node v.
- The last line contains a single integer, s, denoting the index of the starting node.

Constraints

- $1 \leq q \leq 10$
- $2 \leq n \leq 1000$
- $1 \leq m \leq \frac{n \cdot(n-1)}{2}$
- $1 \leq u, v, s \leq n$

Output Format

For each of the q queries, print a single line of $n-1$ space-separated integers denoting the shortest distances to each of the $n-1$ other nodes from starting position s. These distances should be listed sequentially by node number (i.e., $1,2, \ldots, n$), but should not include node s. If some node is unreachable from s, print -1 as the distance to that node.

Sample Input

```
2
2
3
1
3
```

```
6 6 -1
-1 6
```


Explanation

We perform the following two queries:

1. The given graph can be represented as:

where our start node, s, is node 1 . The shortest distances from s to the other nodes are one edge to node 2 , one edge to node 3 , and an infinite distance to node 4 (which it's not connected to). We then print node 1 's distance to nodes 2,3 , and 4 (respectively) as a single line of space-separated integers: 6, 6, -1.
2. The given graph can be represented as:

where our start node, s, is node 2 . There is only one edge here, so node 1 is unreachable from node 2 and node 3 has one edge connecting it to node 2 . We then print node 2 's distance to nodes 1 and 3 (respectively) as a single line of space-separated integers: -1 6 .

Note: Recall that the actual length of each edge is 6 , and we print -1 as the distance to any node that's unreachable from s.

