Nested Logic

Your local library needs your help! Given the expected and actual return dates for a library book, create a program that calculates the fine (if any). The fee structure is as follows:

1. If the book is returned on or before the expected return date, no fine will be charged (i.e.: fine $=0$).
2. If the book is returned after the expected return day but still within the same calendar month and year as the expected return date, fine $=15$ Hackos \times (the number of days late).
3. If the book is returned after the expected return month but still within the same calendar year as the expected return date, the fine $=500$ Hackos \times (the number of months late).
4. If the book is returned after the calendar year in which it was expected, there is a fixed fine of 10000 Hackos.

Input Format

The first line contains 3 space-separated integers denoting the respective day, month, and year on which the book was actually returned.
The second line contains 3 space-separated integers denoting the respective day, month, and year on which the book was expected to be returned (due date).

Constraints

- $1 \leq D \leq 31$
- $1 \leq M \leq 12$
- $1 \leq Y \leq 3000$
- It is guaranteed that the dates will be valid Gregorian calendar dates.

Output Format

Print a single integer denoting the library fine for the book received as input.

Sample Input

```
962015
6 6 2015
```


Sample Output

```
4 5
```


Explanation

Given the following return dates:
Actual: $D_{a}=9, M_{a}=6, Y_{a}=2015$

Because $Y_{e} \equiv Y_{a}$, we know it is less than a year late.
Because $M_{e} \equiv M_{a}$, we know it's less than a month late.
Because $D_{e}<D_{a}$, we know that it was returned late (but still within the same month and year).
Per the library's fee structure, we know that our fine will be 15 Hackos \times (\# days late). We then print the result of $15 \times\left(D_{a}-D_{e}\right)=15 \times(9-6)=45$ as our output.

