Lisa just got a new math workbook. A workbook contains exercise problems, grouped into chapters. Lisa believes a problem to be special if its index (within a chapter) is the same as the page number where it's located. The format of Lisa's book is as follows:

- There are n chapters in Lisa's workbook, numbered from 1 to n.
- The $i^{\text {th }}$ chapter has $\operatorname{arr}[i]$ problems, numbered from 1 to $\operatorname{arr}[i]$.
- Each page can hold up to k problems. Only a chapter's last page of exercises may contain fewer than k problems.
- Each new chapter starts on a new page, so a page will never contain problems from more than one chapter.
- The page number indexing starts at 1 .

Given the details for Lisa's workbook, can you count its number of special problems?

Example

$\operatorname{arr}=[4,2]$
$k=3$
Lisa's workbook contains $\operatorname{arr}[1]=4$ problems for chapter 1 , and $\operatorname{arr}[2]=2$ problems for chapter 2 . Each page can hold $k=3$ problems.

The first page will hold 3 problems for chapter 1 . Problem 1 is on page 1 , so it is special. Page 2 contains only Chapter 1, Problem 4, so no special problem is on page 2 . Chapter 2 problems start on page 3 and there are 2 problems. Since there is no problem 3 on page 3 , there is no special problem on that page either. There is 1 special problem in her workbook.

Note: See the diagram in the Explanation section for more details.

Function Description

Complete the workbook function in the editor below.
workbook has the following parameter(s):

- int n : the number of chapters
- int k : the maximum number of problems per page
- int arr[n]: the number of problems in each chapter

Returns

- int: the number of special problems in the workbook

Input Format

The first line contains two integers n and k, the number of chapters and the maximum number of problems per page.

The second line contains n space-separated integers $\operatorname{arr}[i]$ where $\operatorname{arr}[i]$ denotes the number of problems in the $i^{t h}$ chapter.

Constraints

- $1 \leq n, k, \operatorname{arr}[i] \leq 100$

Sample Input

```
STDIN
    Function
-------------
5 3 n = 5, k = 3
4 6 1 10 arr = [4, 2, 6, 1, 10]
```


Sample Output

4

Explanation

The diagram below depicts Lisa's workbook with $n=5$ chapters and a maximum of $k=3$ problems per page. Special problems are outlined in red, and page numbers are in yellow squares.

There are 4 special problems and thus we print the number 4 on a new line.

