List Comprehensions

Let's learn about list comprehensions! You are given three integers x, y and z representing the dimensions of a cuboid along with an integer n. Print a list of all possible coordinates given by (i, j, k) on a 3D grid where the sum of $i+j+k$ is not equal to n. Here, $0 \leq i \leq x ; 0 \leq j \leq y ; 0 \leq k \leq z$. Please use list comprehensions rather than multiple loops, as a learning exercise.

Example

$x=1$
$y=1$
$z=2$
$n=3$
All permutations of $[i, j, k]$ are:
$[[0,0,0],[0,0,1],[0,0,2],[0,1,0],[0,1,1],[0,1,2],[1,0,0],[1,0,1],[1,0,2],[1,1,0],[1,1,1],[1,1,2]]$.
Print an array of the elements that do not sum to $n=3$.
$[[0,0,0],[0,0,1],[0,0,2],[0,1,0],[0,1,1],[1,0,0],[1,0,1],[1,1,0],[1,1,2]]$

Input Format

Four integers x, y, z and n, each on a separate line.

Constraints

Print the list in lexicographic increasing order.

Sample Input 0

Sample Output 0

```
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 1, 1]]
```


Explanation 0

Each variable x, y and z will have values of 0 or 1 . All permutations of lists in the form $[i, j, k]=[[0,0,0],[0,0,1],[0,1,0],[0,1,1],[1,0,0],[1,0,1],[1,1,0],[1,1,1]]$.
Remove all arrays that sum to $n=2$ to leave only the valid permutations.

Sample Input 1

Sample Output 1

$[[0,0,0],[0,0,1],[0,1,0],[0,1,2],[0,2,1],[0,2,2],[1,0,0],[1,0,2],[1,1,1],[1,1$,
$2],[1,2,0],[1,2,1],[1,2,2],[2,0,1],[2,0,2],[2,1,0],[2,1,1],[2,1,2],[2,2,0],[2,2$, 1], $[2,2,2]]$

