Long Permutation

Consider an inifite array, a, of positive numbers, a_{1}, a_{2}, \ldots, where each $a_{i}=i$. You can apply a permutation, p, of size n (i.e., n different numbers $1 \leq p_{1}, \ldots, p_{n} \leq n$) to the n-element subset of your array from a_{1} through a_{n} in the following way:

$$
\left(a_{1}, \ldots, a_{n}\right) \rightarrow\left(a_{p_{1}}, \ldots, a_{p_{n}}\right)
$$

To get infinite array b, you must apply permutation p to the first n elements (a_{1} to a_{n}), then to elements a_{2} through a_{n+1}, then to elements a_{3} through a_{n+2}, and so on, infinitely many times.

Given the values of n, m, and p, find and print the value of b_{m}. See the Explanation section below for more detail.

Note: This challenge uses 1-based array indexing.

Input Format

The first line contains 2 space-separated integers, n and m, respectively.
The second line contains n space-separated integers describing the respective values of $p_{1}, p_{2}, \ldots, p_{n}$.

Constraints

- $1 \leq n \leq 10^{5}$
- $1 \leq m \leq 10^{18}$
- $1 \leq p_{1}, p_{2}, \ldots, p_{n} \leq n$, and each p_{i} is unique.

Output Format

Print a single integer denoting the value of b_{m}.

Sample Input 0

10
21

Sample Output 0

```
1 1
```


Sample Input 1

```
3 1
2 3 1
```


Sample Output 1

Sample Input 2

```
3 10
2 3 1
```


Sample Output 2

```
1 0
```


Explanation

Sample Case 0 has the following sequence of array transformations:
$123456789101112 \ldots$
$213456789101112 \ldots$
$231456789101112 \ldots$
$234156789101112 \ldots$
$234516789101112 \ldots$
$234561789101112 \ldots$
$234567189101112 \ldots$
$234567819101112 \ldots$
$234567891101112 \ldots$
$234567891011112 \ldots$
$234567891011112 \ldots$
As you can see, each $b_{i}=a_{i}+1=i+1$. Thus, we know that $b_{m}=m+1=10+1=11$.
Sample Case 1 and Sample Case 2 have the following sequence of array transformations:
12345678910111213 ...
$23145678910111213 \ldots$
$21435678910111213 \ldots$
$21354678910111213 \ldots$
$21346578910111213 \ldots$
$21345768910111213 \ldots$
$21345687910111213 \ldots$
$21345679810111213 \ldots$
$21345678109111213 \ldots$
$21345678911101213 \ldots$
$21345678910121113 \ldots$
As you can see, $b_{1}=2$ and $b_{10}=10$.

