Daniel loves graphs. He thinks a graph is special if it has the following properties:

- It is undirected.
- The length of each edge is 1 .
- It includes exactly P different lovely triplets.

A triplet is a set of 3 different nodes. A triplet is lovely if the minimum distance between each pair of nodes in the triplet is exactly Q. Two triplets are different if 1 or more of their component nodes are different.

Given P and Q, help Daniel draw a special graph.

Input Format

A single line containing 2 space-separated integers, P (the number of different lovely triplets you must have in your graph) and Q (the required distance between each pair of nodes in a lovely triplet), respectively.

Constraints

- $1 \leq P \leq 5000$
- $2 \leq Q \leq 9$

Output Format

For the first line, print 2 space-separated integers, N (the number of nodes in the graph) and M (the number of edges in the graph), respectively.
On each line i of the M subsequent lines, print two space-separated integers, u_{i} and v_{i}, describing an edge between nodes u_{i} and v_{i}.

Your output must satisfy the following conditions:

- $0 \leq N, M \leq 100$
- $1 \leq u_{i}, v_{i} \leq N$

If there is more than one correct answer, print any one of them.

Sample Input

```
32
```


Sample Output

Explanation

There are exactly $P=3$ lovely triplets in this graph: $\{1,3,5\},\{2,4,6\}$, and $\{2,6,7\}$.

Observe that each node in a lovely triplet is $Q=2$ edges away from the other nodes composing the lovely triplet.

