Manasa and Factorials

Manasa was sulking her way through a boring class when suddenly her teacher singled her out and asked her a question. He gave her a number \mathbf{n} and Manasa has to come up with the smallest number m which contains atleast \mathbf{n} number of zeros at the end of \mathbf{m} !. Help Manasa come out of the sticky situation.

Input Format

The first line contains an integer T i.e. the number of Test cases.
Next T lines will contain an integer n.

Output Format

Print smallest such number m.

Constraints

$1 \leq T \leq 100$
$1 \leq n \leq 10^{16}$

Sample Input

```
3
1
2
3
```


Sample Output

```
5
10
15
```


Explanation

1. As $4!=24$ and $5!=120$, so minimum value of m will be 5 .
2. As $9!=362880$ and $10!=3628800$, so minimum value of m will be 10 .
3. As $14!=87178291200$ and $15!=1307674368000$, so minimum value of m will be 15 .
