You are given an integer N . Is there a permutation of digits of integer that's divisible by 8? A permutation of digits of integer N is defined as an integer formed by rearranging the digits of N . For example, if the number $N=123$, then $\{123,132,213,231,312,321\}$ are the possible permutations.

Input Format

The first line contains an integer T i.e. number of test cases.
T lines follow, each containing the integer N.

Output Format

For each test case print YES if there exists one such re-arrangement of N such that it is divisible by 8 or
no if there isn't.

Constraints

$1<=\mathrm{T}<=45$
$0<=\mathrm{N}<=10^{110}$

Note

Re-arrangements of 10 are $\{10,01\}$ which boils down to $\{10,1\}$.

Sample Input

```
2
6 1
75
```


Sample Output

YES

NO

Explanation

Test case \#00: 16 is permutation of 61 which is divisible by 8 .
Test case \#01: None of permutation of $75,\{57,75\}$, are divisible by 8.

