Manasa loves Maths

You are given an integer N. Is there a permutation of digits of integer that's divisible by 8? A permutation of digits of integer N is defined as an integer formed by rearranging the digits of N. For example, if the number N = 123, then {123, 132, 213, 231, 312, 321} are the possible permutations.

Input Format

The first line contains an integer T i.e. number of test cases. T lines follow, each containing the integer N.

Output Format

For each test case print \underline{YES} if there exists one such re-arrangement of N such that it is divisible by 8 or NO if there isn't.

Constraints

 $1 \le T \le 45$ $0 \le N \le 10^{110}$

Note

Re-arrangements of 10 are $\{10, 01\}$ which boils down to $\{10, 1\}$.

Sample Input

2 61 75

Sample Output

YES NO

Explanation

Test case #00: 16 is permutation of 61 which is divisible by 8.

Test case #01: None of permutation of 75, {57, 75}, are divisible by 8.