Suppose that A is a list of n numbers $\left\{A_{1}, A_{2}, A_{3}, \ldots, A_{n}\right\}$ and $B=\left\{B_{1}, B_{2}, B_{3}, \ldots, B_{n}\right\}$ is a permutation of these numbers, we say B is K-Manipulative if and only if:
$M(B)=\operatorname{minimum}\left(B_{1} \oplus B_{2}, B_{2} \oplus B_{3}, B_{3} \oplus B_{4}, \ldots, B_{n-1} \oplus B_{n}, B_{n} \oplus B_{1}\right)$ is not less than 2^{K}, where \oplus represents the XOR operator.

You are given A. Find the largest K such that there exists a K-manipulative permutation B.

Input:

The first line is an integer N. The second line contains N space separated integers - $A_{1} A_{2} \ldots A_{n}$.

Output:

The largest possible K, or -1 if there is no solution.

Constraints:

- $1<n<=100$
- $0 \leq A_{i} \leq 10^{9}$, where $i \in[1, n]$

Sample Input 0

```
3
13 3 10
```


Sample Output 0

```
2
```


Explanation 0

Here the list A is $\{13,3,10\}$. One possible permutation $B=\{10,3,13\}$. Here
$M(B)=\operatorname{minimum}\left\{B_{1} \oplus B_{2}, B_{2} \oplus B_{3}, B_{3} \oplus B_{1}\right\}=$ minimum $\{10 \oplus 3,3 \oplus 13,13 \oplus 10\}=$ minimum $\{9,14,7\}=7$.
So there exists a permutation B of A such that $M(B)$ is not less than $4=2^{2}$. However there does not exist any permutation B of A such that $M(B)$ is not less than $8=2^{3}$. So the maximum possible value of K is 2 .

Sample Input 1

4
1234

Sample Output 1

Explanation 1

Here the list A is $\{1,2,3,4\}$. One possible permutation $B=\{1,2,4,3\}$. Here $M(B)=\operatorname{minimum}\left\{B_{1} \oplus B_{2}, B_{2} \oplus B_{3}, B_{3} \oplus B_{4} B_{4} \oplus B_{1}\right\}=$ minimum $\{1 \oplus 2,2 \oplus 4,4 \oplus 33 \oplus 1\}=\operatorname{minimum}\{3,6,7,2\}=2$.
So there exists a permutation B of A such that $M(B)$ is not less than $2=2^{1}$. However there does not exist any permutation B of A such that $M(B)$ is not less than $4=2^{2}$. So the maximum possible value of K is 1 .

