Manipulative Numbers

HackerRank

Suppose that A is a list of n numbers $\{A_1, A_2, A_3, \ldots, A_n\}$ and $B = \{B_1, B_2, B_3, \ldots, B_n\}$ is a permutation of these numbers, we say B is *K*-Manipulative if and only if:

 $M(B) = minimum(B_1 \oplus B_2, B_2 \oplus B_3, B_3 \oplus B_4, \dots, B_{n-1} \oplus B_n, B_n \oplus B_1)$ is not less than 2^K , where \oplus represents the *XOR* operator.

You are given A. Find the largest K such that there exists a *K*-manipulative permutation B.

Input:

The first line is an integer N. The second line contains N space separated integers - $A_1 A_2 \ldots A_n$.

Output:

The largest possible K, or -1 if there is no solution.

Constraints:

- 1 < n <= 100
- $0 \leq A_i \leq 10^9, where \ i \in [1,n]$

Sample Input 0

```
3
13 3 10
```

Sample Output 0

2

Explanation 0

Here the list A is $\{13, 3, 10\}$. One possible permutation $B = \{10, 3, 13\}$. Here $M(B) = minimum\{B_1 \oplus B_2, B_2 \oplus B_3, B_3 \oplus B_1\} =$ $minimum\{10 \oplus 3, 3 \oplus 13, 13 \oplus 10\} = minimum\{9, 14, 7\} = 7.$ So there exists a permutation B of A such that M(B) is not less than $4 = 2^2$. However there does not

exist any permutation B of A such that M(B) is not less than $8=2^3$. So the maximum possible value of K is 2.

Sample Input 1

4 1 2 3 4

1

Explanation 1

Here the list A is $\{1, 2, 3, 4\}$. One possible permutation $B = \{1, 2, 4, 3\}$. Here $M(B) = minimum\{B_1 \oplus B_2, B_2 \oplus B_3, B_3 \oplus B_4 B_4 \oplus B_1\} = minimum\{1 \oplus 2, 2 \oplus 4, 4 \oplus 3 3 \oplus 1\} = minimum\{3, 6, 7, 2\} = 2$.

So there exists a permutation B of A such that M(B) is not less than $2 = 2^1$. However there does not exist any permutation B of A such that M(B) is not less than $4 = 2^2$. So the maximum possible value of K is 1.