Marc loves cupcakes, but he also likes to stay fit. Each cupcake has a calorie count, and Marc can walk a distance to expend those calories. If Marc has eaten j cupcakes so far, after eating a cupcake with c calories he must walk at least $2^{j} \times c$ miles to maintain his weight.

Example

calorie $=[5,10,7]$
If he eats the cupcakes in the order shown, the miles he will need to walk are $\left(2^{0} \times 5\right)+\left(2^{1} \times 10\right)+\left(2^{2} \times 7\right)=5+20+28=53$. This is not the minimum, though, so we need to test other orders of consumption. In this case, our minimum miles is calculated as $\left(2^{0} \times 10\right)+\left(2^{1} \times 7\right)+\left(2^{2} \times 5\right)=10+14+20=44$.

Given the individual calorie counts for each of the cupcakes, determine the minimum number of miles Marc must walk to maintain his weight. Note that he can eat the cupcakes in any order.

Function Description

Complete the marcsCakewalk function in the editor below.
marcsCakewalk has the following parameter(s):

- int calorie[n]: the calorie counts for each cupcake

Returns

- long: the minimum miles necessary

Input Format

The first line contains an integer n, the number of cupcakes in calorie.
The second line contains n space-separated integers, calorie $[i]$.

Constraints

- $1 \leq n \leq 40$
- $1 \leq c[i] \leq 1000$

Sample Input 0

3
132

Sample Output 0

```
    1 1
```


Explanation 0

Let's say the number of miles Marc must walk to maintain his weight is miles. He can minimize miles by eating the $n=3$ cupcakes in the following order:

1. Eat the cupcake with $c_{1}=3$ calories, so miles $=0+\left(3 \cdot 2^{0}\right)=3$.
2. Eat the cupcake with $c_{2}=2$ calories, so miles $=3+\left(2 \cdot 2^{1}\right)=7$.
3. Eat the cupcake with $c_{0}=1$ calories, so miles $=7+\left(1 \cdot 2^{2}\right)=11$.

We then print the final value of miles, which is 11 , as our answer.

Sample Input 1

```
4
7496
```


Sample Output 1

79

Explanation 1

$\left(2^{0} * 9\right)+\left(2^{1} * 7\right)+\left(2^{2} * 6\right)+\left(2^{3} * 4\right)=9+14+24+32=79$

