Marc's Cakewalk

Marc loves cupcakes, but he also likes to stay fit. Each cupcake has a calorie count, and Marc can walk a distance to expend those calories. If Marc has eaten j cupcakes so far, after eating a cupcake with c calories he must walk at least $2^j \times c$ miles to maintain his weight.

Example

calorie = [5, 10, 7]

If he eats the cupcakes in the order shown, the miles he will need to walk are

 $(2^0 \times 5) + (2^1 \times 10) + (2^2 \times 7) = 5 + 20 + 28 = 53$. This is not the minimum, though, so we need to test other orders of consumption. In this case, our minimum miles is calculated as $(2^0 \times 10) + (2^1 \times 7) + (2^2 \times 5) = 10 + 14 + 20 = 44$.

Given the individual calorie counts for each of the cupcakes, determine the minimum number of miles Marc must walk to maintain his weight. Note that he can eat the cupcakes *in any order*.

Function Description

Complete the marcsCakewalk function in the editor below.

marcsCakewalk has the following parameter(s):

• int calorie[n]: the calorie counts for each cupcake

Returns

· long: the minimum miles necessary

Input Format

The first line contains an integer n, the number of cupcakes in calorie. The second line contains n space-separated integers, calorie[i].

Constraints

- $1 \le n \le 40$
- $1 \le c[i] \le 1000$

Sample Input 0

3 1 3 2

Sample Output 0

11

Explanation 0

Let's say the number of miles Marc must walk to maintain his weight is miles. He can minimize miles by eating the n=3 cupcakes in the following order:

- 1. Eat the cupcake with $c_1=3$ calories, so $miles=0+(3\cdot 2^0)=3$.
- 2. Eat the cupcake with $c_2=2$ calories, so $miles=3+(2\cdot 2^1)=7$.
- 3. Eat the cupcake with $c_0=1$ calories, so $miles=7+(1\cdot 2^2)=11$.

We then print the final value of miles, which is 11, as our answer.

Sample Input 1

```
4
7 4 9 6
```

Sample Output 1

79

Explanation 1

$$(2^0*9) + (2^1*7) + (2^2*6) + (2^3*4) = 9 + 14 + 24 + 32 = 79$$