The Matchstick Experiment

In an $n \times m$ grid, $2 \cdot n \cdot m-n-m$ matchsticks are placed at the boundaries between cells. For example, if $n=5$ and $m=9$, the $2 \cdot 5 \cdot 9-5-9=76$ matchsticks are placed in the following way:

The Experiment

1. For each of the $2 \cdot n \cdot m-n-m$ matchsticks, remove it with probability p.
2. We define a connected component to be a maximal set of cells not isolated from one another by matchsticks. We calculate our score as the number of connected components in the grid with ≤ 3 cells, divided by $n \cdot m$.

For example, suppose our grid looks like this after performing the first step:

To calculate our score, we need to first find the number of connected components having ≤ 3 cells. The diagram below counts all such components consisting of ≤ 3 connected cells:

As you can see, there are 16 connected components of size ≤ 3. From this, we perform the following calculation:

$$
\text { score }=\frac{(\text { connected components with size } \leq 3)}{n \cdot m}=\frac{16}{45} \approx 0.35555555
$$

You are given q queries where each query consists of n, m, and p. For each query, find and print the expected value of score on a new line.

Need Help? Check out this learning aid explaining some important properties of expected values. Input Format

The first line contains an integer, q, denoting the number of queries.
Each of the q subsequent lines contains three space-separated integers describing the respective values of integer n, integer m, and real number p.

Constraints

- $0 \leq p \leq 1$
- $1 \leq q, n, m \leq 10^{5}$
- p is a real number scaled to two decimal places (e.g., 1.23).

Subtask

- For 40% of the total score, $q, n, m \leq 300$

Output Format

For each query, print a single real number on a new line denoting the answer to the query. Any answer having an absolute error within 10^{-9} of the true answer is acceptable.

Sample Input 0

```
2
2 2 0.50
```


Sample Output 0

```
0.4375000000
0.0810546875000
```


Explanation 0

We can verify our answer by performing several brute-force simulations of the experiment and then averaging the scores.

