Given an array of integers, find the subset of non-adjacent elements with the maximum sum. Calculate the sum of that subset. It is possible that the maximum sum is 0 , the case when all elements are negative.

Example

$\operatorname{arr}=[-2,1,3,-4,5]$
The following subsets with more than 1 element exist. These exclude the empty subset and single element subsets which are also valid.
$\left.\begin{array}{|lc|}\hline \text { Subset } & \text { Sum } \\ {[-2,} & 3, \\ {[-2,} & 6\end{array}\right]$

The maximum subset sum is 8 . Note that any individual element is a subset as well.
$\operatorname{arr}=[-2,-3,-1]$
In this case, it is best to choose no element: return 0 .

Function Description

Complete the $\max S u b s e t S u m$ function in the editor below.
maxSubsetSum has the following parameter(s):

- int arr[n]: an array of integers

Returns

- int: the maximum subset sum

Input Format

The first line contains an integer, n.
The second line contains n space-separated integers $\operatorname{arr}[i]$.

Constraints

- $1 \leq n \leq 10^{5}$
- $-10^{4} \leq \operatorname{arr}[i] \leq 10^{4}$

Sample Input 0

Sample Output 0

13

Explanation 0

Our possible subsets are $[3,4,5],[3,4],[3,6],[3,5],[7,6],[7,5]$ and $[4,5]$. The largest subset sum is 13 from subset $[7,6]$

Sample Input 1

5
$\begin{array}{lllll}2 & 1 & 5 & 8 & 4\end{array}$

Sample Output 1

```
1 1
```


Explanation 1

Our subsets are $[2,5,4],[2,5],[2,8],[2,4],[1,8],[1,4]$ and $[5,4]$. The maximum subset sum is 11 from the first subset listed.

Sample Input 2

5
$\begin{array}{lllll}3 & 5 & -7 & 8 & 10\end{array}$

Sample Output 2

```
1 5
```


Explanation 2

Our subsets are $[3,-7,10],[3,8],[3,10],[5,8],[5,10]$ and $[-7,10]$. The maximum subset sum is 15 from the fifth subset listed.

