Transforming data into some other data is typical of a programming job. This problem is about a particular kind of transformation which we'll call the max transform.

Let $A$ be a zero-indexed array of integers. For $0 \leq i \leq j<\operatorname{length}(A)$, let $A_{i \ldots j}$ denote the subarray of $A$ from index $i$ to index $j$, inclusive.

Let's define the max transform of $A$ as the array obtained by the following procedure:

- Let $B$ be a list, initially empty.
- For $k$ from 0 to length $(A)-1$ :
- For $i$ from 0 to length $(A)-k-1$ :
- Let $j=i+k$.
- Append $\max \left(A_{i \ldots j}\right)$ to the end of $B$.
- Return $B$.

The returned array is defined as the max transform of $A$. We denote it by $S(A)$.
Complete the function solve that takes an integer array $A$ as input.
Given an array $A$, find the sum of the elements of $S(S(A)$ ), i.e., the max transform of the max transform of $A$. Since the answer may be very large, only find it modulo $10^{9}+7$.

## Input Format

The first line of input contains a single integer $n$ denoting the length of $A$.
The second line contains $n$ space-separated integers $A_{0}, A_{1}, \ldots, A_{n-1}$ denoting the elements of $A$.

## Constraints

- $1 \leq n \leq 2 \cdot 10^{5}$
- $1 \leq A_{i} \leq 10^{6}$


## Subtasks

- For $33.33 \%$ of the total score, $1 \leq n \leq 4000$


## Output Format

Print a single line containing a single integer denoting the answer.

## Sample Input 0

## Sample Output 0

58

## Explanation 0

In the sample case, we have:

$$
\begin{aligned}
A & =[3,2,1] \\
S(A) & =[3,2,1,3,2,3] \\
S(S(A)) & =[3,2,1,3,2,3,3,2,3,3,3,3,3,3,3,3,3,3,3,3,3]
\end{aligned}
$$

Therefore, the sum of the elements of $S(S(A))$ is 58 .

