Max Transform

Transforming data into some other data is typical of a programming job. This problem is about a particular kind of transformation which we'll call the *max transform*.

Let A be a zero-indexed array of integers. For $0 \le i \le j < \operatorname{length}(A)$, let $A_{i...j}$ denote the subarray of A from index i to index j, inclusive.

Let's define the \max transform of $oldsymbol{A}$ as the array obtained by the following procedure:

- Let $oldsymbol{B}$ be a list, initially empty.
- For k from 0 to $\operatorname{length}(A) 1$:
 - For i from 0 to $\operatorname{length}(A) k 1$:
 - Let j = i + k.
 - Append $\max(A_{i...j})$ to the end of B.
- Return B.

The returned array is defined as the max transform of A. We denote it by S(A).

Complete the function solve that takes an integer array A as input.

Given an array A, find the sum of the elements of S(S(A)), i.e., the *max transform* of the *max transform* of A. Since the answer may be very large, only find it modulo $10^9 + 7$.

Input Format

The first line of input contains a single integer n denoting the length of A.

The second line contains n space-separated integers A_0,A_1,\ldots,A_{n-1} denoting the elements of A.

Constraints

- $1 \le n \le 2 \cdot 10^5$
- $1 < A_i < 10^6$

Subtasks

• For 33.33% of the total score, $1 \leq n \leq 4000$

Output Format

Print a single line containing a single integer denoting the answer.

Sample Input 0

Sample Output 0

58

Explanation 0

In the sample case, we have:

Therefore, the sum of the elements of S(S(A)) is 58.