Xander Cage has a list of cities he can visit on his new top-secret mission. He represents each city as a tuple of (latitude, longitude, height, points). The values of latitude, longitude, and height are distinct across all cities.

We define a mission as a sequence of cities, $c_{1}, c_{2}, c_{3}, \cdots, c_{k}$, that he visits. We define the total points of such a mission to be the sum of the points of all the cities in his mission list.

Being eccentric, he abides by the following rules on any mission:

- He can choose the number of cities he will visit (if any).
- He can start the mission from any city.
- He visits cities in order of strictly increasing height.
- The absolute difference in latitude between adjacent visited cities in his mission must be at most $d_{l} a t$.
- The absolute difference in longitude between adjacent visited cities in his mission must be at most d_{l} ong.

Given $d _l a t, d _l o n g$, and the definitions for n cities, find and print the maximum possible total points that Xander can earn on a mission.

Input Format

The first line contains three space-separated integers describing the respective values of $n, d _l a t$, and d_long.
Each line i of the n subsequent lines contains four space-separated integers denoting the respective latitude, longitude, height, and points for a city.

Constraints

- $1 \leq n \leq 2 \times 10^{5}$
- $1 \leq d _l a t, d _l o n g \leq 2 \times 10^{5}$
- $1 \leq$ latitude, longitude, height $\leq 2 \times 10^{5}$
- $-2 \times 10^{5} \leq$ points $\leq 2 \times 10^{5}$

Output Format

Print a single integer denoting the maximum possible points that Xander can earn on a mission.

Sample Input 0

Sample Output 0

5

Explanation 0

Xander can start at city 1 , then go to city 2 , and then go to city 3 for a maximum value of total points $=3+-1+3=5$

City 3

Note that he cannot go directly from city 1 to city 3 as that would violate his rules that the absolute difference in latitude between adjacent visited cities be $\leq d _l a t$ and the absolute difference in longitude between adjacent visited cities be $\leq d _l o n g$. Because $d _l a t=1$ and $d _l o n g=1$, he cannot directly travel between those cities.

