Maximizing the Function

Consider an array of n binary integers (i.e., 0 's and 1 's) defined as $A=\left[a_{0}, a_{1}, \ldots, a_{n-1}\right]$.
Let $f(i, j)$ be the bitwise XOR of all elements in the inclusive range between index i and index j in array A. In other words, $f(i, j)=a_{i} \oplus a_{i+1} \oplus \ldots \oplus a_{j}$. Next, we'll define another function, g :

$$
g(x, y)=\sum_{i=x}^{y} \sum_{j=i}^{y} f(i, j)
$$

Given array A and q independent queries, perform each query on A and print the result on a new line. A query consists of three integers, x, y, and k, and you must find the maximum possible $g(x, y)$ you can get by changing at most k elements in the array from 0 to 1 or from 1 to 0 .

Note: Each query is independent and considered separately from all other queries, so changes made in one query have no effect on the other queries.

Input Format

The first line contains two space-separated integers denoting the respective values of n (the number of elements in array A) and q (the number of queries).
The second line contains n space-separated integers where element i corresponds to array element a_{i} $(0 \leq i<n)$.
Each line i of the q subsequent lines contains 3 space-separated integers, x_{i}, y_{i} and k_{i} respectively, describing query $q_{i}(0 \leq i<q)$.

Constraints

- $1 \leq n, q \leq 5 \times 10^{5}$
- $0 \leq a_{i} \leq 1$
- $0 \leq x_{i} \leq y_{i}<n$
- $0 \leq k_{i} \leq n$

Subtask

- $1 \leq n, q \leq 5000$ and $0 \leq k_{i} \leq 1$ for 40% of the maximum score
- $n=5 \times 10^{5}, m=5 \times 10^{5}$ and $k_{i}=0$ for 20% of the maximum score

Output Format

Print q lines where line i contains the answer to query q_{i} (i.e., the maximum value of $g\left(x_{i}, y_{i}\right)$ if no more than k_{i} bits are changed).

Sample Input

Sample Output

4
0

Explanation

Given $A=[0,0,1]$, we perform the following $q=2$ queries:

1. If we change $a_{0}=0$ to 1 , then we get $A^{\prime}=[1,0,1]$ and $g(x=0, y=2)=4$.
2. In this query, $g(x=0, y=1)=0$.
