Super Maximum Cost

Victoria has a tree, T, consisting of N nodes numbered from 1 to N. Each edge from node U_{i} to V_{i} in tree T has an integer weight, W_{i}.

Let's define the cost, C, of a path from some node X to some other node Y as the maximum weight (W) for any edge in the unique path from node X to node Y.

Victoria wants your help processing Q queries on tree T, where each query contains 2 integers, L and R , such that $L \leq R$. For each query, she wants to print the number of different paths in T that have a cost, C, in the inclusive range $[L, R]$.

It should be noted that path from some node X to some other node Y is considered same as path from node Y to X i.e $\{X, Y\}$ is same as $\{Y, X\}$.

Input Format

The first line contains 2 space-separated integers, N (the number of nodes) and Q (the number of queries), respectively.
Each of the $N-1$ subsequent lines contain 3 space-separated integers, U, V, and W, respectively, describing a bidirectional road between nodes U and V which has weight W.
The Q subsequent lines each contain 2 space-separated integers denoting L and R.

Constraints

- $1 \leq N, Q \leq 10^{5}$
- $1 \leq U, V \leq N$
- $1 \leq W \leq 10^{9}$
- $1 \leq L \leq R \leq 10^{9}$

Scoring

- $1 \leq N, Q \leq 10^{3}$ for 30% of the test data.
- $1 \leq N, Q \leq 10^{5}$ for 100% of the test data.

Output Format

For each of the Q queries, print the number of paths in T having cost C in the inclusive range $[L, R]$ on a new line.

Sample Input

```
5
2 3
142
```


Sample Output

Explanation

$$
Q_{1}:\{3,4\}
$$

$Q_{2}:\{1,3\},\{3,4\},\{1,4\}$
$Q_{3}:\{1,4\},\{1,2\},\{2,4\},\{1,3\},\{2,3\}$
$Q_{4}:\{1,4\},\{1,2\},\{2,4\},\{1,3\},\{2,3\}$
...etc.

