HackerRank

Super Maximum Cost Queries

Victoria has a tree, T, consisting of N nodes numbered from 1 to N. Each edge from node U_i to V_i in tree T has an integer weight, W_i .

Let's define the cost, C, of a path from some node X to some other node Y as the maximum weight (W) for any edge in the unique path from node X to node Y.

Victoria wants your help processing Q queries on tree T, where each query contains 2 integers, L and R, such that $L \leq R$. For each query, she wants to print the number of different paths in T that have a cost, C, in the inclusive range [L, R].

It should be noted that path from some node X to some other node Y is considered same as path from node Y to X i.e $\{X, Y\}$ is same as $\{Y, X\}$.

Input Format

The first line contains 2 space-separated integers, N (the number of nodes) and Q (the number of queries), respectively.

Each of the N-1 subsequent lines contain 3 space-separated integers, U, V, and W, respectively, describing a bidirectional road between nodes U and V which has weight W.

The Q subsequent lines each contain 2 space-separated integers denoting L and R.

Constraints

- $1 \leq N,Q \leq 10^5$
- $1 \leq U, V \leq N$
- $1 \le W \le 10^9$
- $1 \le L \le R \le 10^9$

Scoring

- $1 \leq N,Q \leq 10^3$ for 30% of the test data.
- + $1 \leq N,Q \leq 10^5$ for 100% of the test data.

Output Format

For each of the Q queries, print the number of paths in T having cost C in the inclusive range [L,R] on a new line.

Sample Input

Sample Output

Explanation

 $\begin{array}{l} Q_1 \colon \{3,4\} \\ Q_2 \colon \{1,3\}, \{3,4\}, \{1,4\} \\ Q_3 \colon \{1,4\}, \{1,2\}, \{2,4\}, \{1,3\}, \{2,3\} \\ Q_4 \colon \{1,4\}, \{1,2\}, \{2,4\}, \{1,3\}, \{2,3\} \\ \dots \text{etc.} \end{array}$